People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Phil
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Advanced RuO2 Thin Films for pH Sensing Applicationcitations
- 2018Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating filmcitations
- 2018Tuning the Plasmonic Response of TiN Nanoparticles Synthesised by the Transferred Arc Plasma Techniquecitations
- 2018Fabrication of sputtered titanium vanadium nitride (TiVN) thin films for micro-supercapacitorscitations
- 2018Cytocompatible tantalum films on Ti6Al4V substrate by filtered cathodic vacuum arc depositioncitations
- 2017Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloyscitations
- 2016Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applicationscitations
- 2011Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glasscitations
- 2011A review of high throughput and combinatorial electrochemistrycitations
- 2010Multilayered coatings: tuneable protection for metalscitations
Places of action
Organizations | Location | People |
---|
article
Tuning the Plasmonic Response of TiN Nanoparticles Synthesised by the Transferred Arc Plasma Technique
Abstract
Titanium nitride exhibitsplasmonic behaviour in the visible and NIR region. Combined with a refractory nature, it can be an attractive alternate plasmonic material useful in many applications. Despite the plethora of methods to produce TiN nanoparticles, it remains challenging to generate high quality TiN nanoparticles efficiently. Here we demonstrate the transferred arc plasma technique as a viable way to synthesis TiN nanoparticles. We show here that modulating the processing conditions can control the optical properties and tune the plasmonic response rendering the application of TiN nanoparticles viable across many applications.