People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pumera, Martin
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 20243D printing of MAX/PLA filament: Electrochemical in-situ etching for enhanced energy conversion and storagecitations
- 2023Heterolayered carbon allotrope architectonics via multi-material 3D printing for advanced electrochemical devicescitations
- 2022Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognitioncitations
- 2022Hierarchical Atomic Layer Deposited V<sub>2</sub>O<sub>5</sub> on 3D Printed Nanocarbon Electrodes for High‐Performance Aqueous Zinc‐Ion Batteriescitations
- 2022Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destructioncitations
- 2022Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activitycitations
- 2021Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Organic photoelectrode engineering:accelerating photocurrent generationviadonor-acceptor interactions and surface-assisted synthetic approachcitations
- 2021Metal-plated 3D-printed electrode for electrochemical detection of carbohydratescitations
- 2021Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures ; Depozice atomárních vrstev fotoelektrokatalytického materiálu na 3D tištěné uhlíkové nanostruktury.citations
- 20172H → 1T phase engineering of layered tantalum disulphides in electrocatalysis: oxygen reduction reactioncitations
- 2017Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic propertiescitations
- 2011Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate-TiO2 filmcitations
- 2005Magnetically trigged direct electrochemical detection of DNA hybridization using Au67 quantum dot as electrical tracercitations
- 2005Glucose biosensor based on carbon nanotube epoxy compositescitations
Places of action
Organizations | Location | People |
---|
article
Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic properties
Abstract
Layered transition metal dichalcogenides (TMDs) are at the forefront of materials research. One of the most important applications of these materials is their electrocatalytic activity towards hydrogen evolution, and these materials are suggested to replace scarce platinum. Whilst there are significant efforts towards this goal, there are various reports of electrocatalysis of MoS2 (which is the most commonly tested TMD) with large variations of the reported electrocatalytic effect of the material, with overpotential varying by several hundreds of millivolts. Here, we analyzed surface properties of various bulk as well as single layer MoS2 samples using inverse gas chromatography. All samples displayed significant variations in surface energies and their heterogeneities. The surface energy ranged from 50 to 120 mJ m(-2) depending on the sample and surface coverage. We correlated the surface properties and previously reported structural features of MoS2 with their electrochemical activities. We concluded that the observed differences in electrochemistry are caused by the surface properties. This is an important finding with an enormous impact on the whole field of electrocatalysis of layered materials.