People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amati, Matteo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25r0.5 Mn0.5O3±delta
- 2023Spatially‐Modulated Silicon Interface Energetics Via Hydrogen Plasma‐Assisted Atomic Layer Deposition of Ultrathin Aluminacitations
- 2022Synthesis and characterization of MWCNT-COOH/Fe3O4 and CNT-COOH/Fe3O4/NiO nanocomposites: assessment of adsorption and photocatalytic performancecitations
- 2020Atomic and electronic structure of a multidomain GeTe crystalcitations
- 2018Depth-Dependent Scanning Photoelectron Microspectroscopy Unravels the Mechanism of Dynamic Pattern Formation in Alloy Electrodepositioncitations
- 2017An in situ near-ambient pressure X-ray photoelectron spectroscopy study of CO2 reduction at Cu in a SOE cellcitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalystcitations
- 2017Low temperature growth of fully covered single-layer graphene using a CoCu catalyst.
- 2017An in situ near-ambient pressure X-ray photoelectron spectroscopy study of CO 2 reduction at Cu in a SOE cellcitations
- 2016Fabrication of Ti substrate grain dependent C/TiO2 composites through carbothermal treatment of anodic TiO2citations
- 2015Tuning electronic properties of carbon nanotubes by nitrogen grafting: Chemistry and chemical stabilitycitations
- 2013Tubular Sn-filled carbon nanostructures on ITO: Nanocomposite material for multiple applicationscitations
- 2013Tubular Sn-filled carbon nanostructures on ITO: Nanocomposite material for multiple applicationscitations
Places of action
Organizations | Location | People |
---|
article
Low temperature growth of fully covered single-layer graphene using a CoCu catalyst
Abstract
A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co–Cu–C ternary phase diagram. Raman spectroscopy confirms the high quality (ID/IG < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties.