Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sadeghi, Hatef

  • Google
  • 17
  • 46
  • 380

University of Warwick

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode7citations
  • 2022Low Thermal Conductivity in Franckeite Heterostructures11citations
  • 2022Thermoelectric properties of organic thin films enhanced by π-π stacking10citations
  • 2020Radical enhancement of molecular thermoelectric efficiency36citations
  • 2019Discriminating Seebeck Sensing of Molecules7citations
  • 2019Quantum and Phonon Interference Enhanced Molecular-Scale Thermoelectricity29citations
  • 2019Unusual length dependence of the conductance in cumulene molecular wires52citations
  • 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Molecules1citations
  • 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions14citations
  • 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wires46citations
  • 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions33citations
  • 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping17citations
  • 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires43citations
  • 2017Thermoelectricity in vertical graphene-C60-graphene architectures21citations
  • 2016Theory of electron and phonon transport in nano and molecular quantum devicescitations
  • 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures49citations
  • 2013Classic and quantum capacitances in bernal bilayer and trilayer graphene field effect transistor4citations

Places of action

Chart of shared publication
Lambert, Colin John
11 / 31 shared
Kolosov, Oleg Victor
3 / 29 shared
Wang, Xinati
1 / 1 shared
Jay, Michael
1 / 1 shared
Lamantia, Angelo
2 / 3 shared
Robinson, Bj
2 / 13 shared
Spiece, Jean
1 / 7 shared
Evangeli, Charalambos
1 / 4 shared
Sangtarash, Sara
7 / 7 shared
Molina-Mendoza, Aday J.
1 / 3 shared
Ramrakhiyani, Kunal Lulla
1 / 1 shared
Mucientes, Marta
1 / 3 shared
Mueller, Thomas
1 / 5 shared
Forcieri, Leonardo
1 / 1 shared
Jarvis, Samuel Paul
1 / 2 shared
Dekkiche, Hervé
1 / 1 shared
Bryce, Martin R.
1 / 3 shared
Wang, Xintai
1 / 4 shared
Xu, W.
1 / 33 shared
Hou, S.
1 / 2 shared
Leary, E.
1 / 1 shared
Christensen, K. E.
1 / 1 shared
González, M. T.
1 / 1 shared
Wu, Qingqing
2 / 2 shared
Agraït, N.
1 / 1 shared
Nichols, R. J.
1 / 3 shared
Tejerina, L.
1 / 1 shared
Higgins, S. J.
1 / 1 shared
Anderson, H. L.
1 / 5 shared
Rubio-Bollinger, G.
1 / 1 shared
Cserti, J.
1 / 1 shared
Koltai, J.
1 / 1 shared
Kukucska, G.
1 / 1 shared
Tajkov, Z.
1 / 1 shared
Kormányos, A.
1 / 1 shared
Alanazy, A.
1 / 1 shared
Rakyta, P.
1 / 1 shared
Noori, Mohammed
2 / 2 shared
Grace, Iain M.
1 / 4 shared
Famili, Marjan
1 / 1 shared
Manrique, David Zsolt
1 / 1 shared
García-Suárez, Víctor M.
1 / 1 shared
Ferrer, Jaime
1 / 5 shared
Redouté, Jean-Michel
1 / 5 shared
Zayegh, Aladin
1 / 1 shared
Lai, Daniel T. H.
1 / 1 shared
Chart of publication period
2023
2022
2020
2019
2018
2017
2016
2013

Co-Authors (by relevance)

  • Lambert, Colin John
  • Kolosov, Oleg Victor
  • Wang, Xinati
  • Jay, Michael
  • Lamantia, Angelo
  • Robinson, Bj
  • Spiece, Jean
  • Evangeli, Charalambos
  • Sangtarash, Sara
  • Molina-Mendoza, Aday J.
  • Ramrakhiyani, Kunal Lulla
  • Mucientes, Marta
  • Mueller, Thomas
  • Forcieri, Leonardo
  • Jarvis, Samuel Paul
  • Dekkiche, Hervé
  • Bryce, Martin R.
  • Wang, Xintai
  • Xu, W.
  • Hou, S.
  • Leary, E.
  • Christensen, K. E.
  • González, M. T.
  • Wu, Qingqing
  • Agraït, N.
  • Nichols, R. J.
  • Tejerina, L.
  • Higgins, S. J.
  • Anderson, H. L.
  • Rubio-Bollinger, G.
  • Cserti, J.
  • Koltai, J.
  • Kukucska, G.
  • Tajkov, Z.
  • Kormányos, A.
  • Alanazy, A.
  • Rakyta, P.
  • Noori, Mohammed
  • Grace, Iain M.
  • Famili, Marjan
  • Manrique, David Zsolt
  • García-Suárez, Víctor M.
  • Ferrer, Jaime
  • Redouté, Jean-Michel
  • Zayegh, Aladin
  • Lai, Daniel T. H.
OrganizationsLocationPeople

article

Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping

  • Lambert, Colin John
  • Manrique, David Zsolt
  • Sadeghi, Hatef
Abstract

<p>We investigate the sign and magnitude of the single-molecule Seebeck coefficient of naphthalenediimide (NDI) under the influence of electrochemical gating and doping. The molecule consists of a NDI core with two alkyl chains in the bay-area position, connected to gold electrodes via benzothiophene (DBT) anchor groups. By switching between the neutral, radical and di-anion charge states, we are able to tune the molecular energy levels relative to the Fermi energy of the electrodes. The resulting single-molecule room-temperature Seebeck coefficents of the three charge states are -294.5 μV K(-1), 122 μV K(-1) and 144 μV K(-1) respectively and the room-temperature power factors are 4.4 × 10(-5) W m(-1) K(-2), 3 × 10(-5) W m(-1) K(-2) and 8.2 × 10(-4) W m(-1) K(-2). As a further strategy for optimising thermoelectric properties, we also investigate the effect on both phonon and electron transport of doping the NDI with either an electron donor (TTF) or an electron acceptor (TCNE). We find that doping by TTF increases the room-temperature Seebeck coefficient and power factor from -73.7 μV K(-1) and 2.6 × 10(-7) W m(-1) K(-2) for bare NDI to -105 μV K(-1) and 3.6 × 10(-4) W m(-1) K(-2) in presence of TTF. The low thermal conductance of NDI-TTF, combined with the higher Seebeck coefficient and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.2, which is higher than that of bare NDI in several orders of magnitude. This demonstrates that both the sign and magnitude of NDI Seebeck coefficient can be tuned reversibly by electrochemical gating and doping, suggesting that such redox active molecules are attractive materials for ultra-thin-film thermoelectric devices.</p>

Topics
  • impedance spectroscopy
  • gold