People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seger, Brian
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Preventing Alloy Electrocatalyst Segregation in Air Using Sacrificial Passivating Overlayers
- 2023Tuning Surface Reactivity and Electric Field Strength via Intermetallic Alloyingcitations
- 2022Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Aucitations
- 2021Semitransparent Selenium Solar Cells as a Top Cell for Tandem Photovoltaicscitations
- 2020Parallel evaluation of the BiI3, BiOI, and Ag3BiI6 layered photoabsorberscitations
- 2020Parallel evaluation of the BiI 3 , BiOI, and Ag 3 BiI 6 layered photoabsorberscitations
- 2019Shining Light on Sulfide Perovskites: LaYS 3 Material Properties and Solar Cellscitations
- 2019Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cellscitations
- 2019Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activationcitations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS 3citations
- 2017Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3citations
- 2015Crystalline TiO 2 : A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodescitations
- 2015Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodescitations
- 2014Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodescitations
- 2014Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Filmscitations
- 2013Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolutioncitations
Places of action
Organizations | Location | People |
---|
article
Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3
Abstract
One of the key challenges in photoelectrochemical water splitting is to identify efficient semiconductors with band gaps of the order of ∼2 eV to operate as the large-band-gap component in water splitting tandem devices. Here, we address this challenge by extensive computational screening of ternary sulfides followed by synthesis and confirmation of the properties of one of the most promising materials. The screening focusses on materials with ABS3 composition taking both perovskite and non-perovskite structures into consideration, and the material selection is based on descriptors for thermodynamic stability, light absorption, charge mobility, and defect tolerance. One of the most promising candidates identified is LaYS<sub>3</sub>. This material was synthesized directly in thin-film form demonstrating its stability, crystal structure, light absorption, and strong photoluminescence. These data confirms its potential applicability in tandem photoelectrochemical devices for hydrogen production.