People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ho-Baillie, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Surface saturation current densities of perovskite thin films from Suns‐photoluminescence quantum yield measurementscitations
- 2023Decoupling Bimolecular Recombination Mechanisms in Perovskite Thin Films Using Photoluminescence Quantum Yield
- 2023Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements
- 2021Silicate glass-to-glass hermetic bonding for encapsulation of next-generation optoelectronicscitations
- 2021Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenchingcitations
- 2021Integrating low-cost earth-abundant co-catalysts with encapsulated perovskite solar cells for efficient and stable overall solar water splittingcitations
- 2020Transparent electrodes consisting of a surface-treated buffer layer based on tungsten oxide for semitransparent perovskite solar cells and four-terminal tandem applicationscitations
- 2020Unveiling the relationship between the perovskite precursor solution and the resulting device performancecitations
- 2018Scaling limits to large area perovskite solar cell efficiencycitations
- 2017Impact of microstructure on the electron-hole interaction in lead halide perovskitescitations
- 2017A life cycle assessment of perovskite/silicon tandem solar cellscitations
- 2017A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modulescitations
- 2017Spatial distribution of lead iodide and local passivation on organo-lead halide perovskitecitations
- 2016Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometrycitations
- 2015Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskitescitations
- 2015Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devicescitations
Places of action
Organizations | Location | People |
---|
article
Impact of microstructure on the electron-hole interaction in lead halide perovskites
Abstract
Despite the remarkable progress in the performance of devices based onthe lead halide perovskite semiconductor family, there is still a lackof consensus on their fundamental photophysical properties. Here, usingmagneto-optical transmission spectroscopy we elucidate the impact of themicrostructure on the Coulomb interaction between photo-createdelectron–hole pairs in methylammonium lead triiodide (MAPbI<sub>3</sub>) and the triple-cation lead mixed-halide composition, Cs<sub>0.05</sub>(MA<sub>0.17</sub>FA<sub>0.83</sub>)<sub>0.95</sub>Pb(I<sub>0.83</sub>Br<sub>0.17</sub>)<sub>3</sub>(Cs: cesium, MA: methylammonium, FA: formamidinium) by investigatingthin films with a wide range of grain sizes from tens of nanometers tomicrons. At low temperatures, in which thermal fluctuations of theinteractions are frozen and the rotational disorder of the organiccation is negligible, the exciton binding energy and reduced effectivemass of carriers remain effectively unchanged with grain size. Weconclude that the microstructure plays a negligible role in the Coulombinteraction of the photo-created electron–hole pairs, in contrast toprevious reports. This renewed understanding of the relationship betweenthese fundamental electronic properties and the microstructure iscritical for future fundamental studies and improving device design.