People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gollas, Bernhard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dissolution and electrolysis of lunar regolith in ionic liquidscitations
- 2018The impact of operating conditions on component and electrode development for zinc-air flow batteriescitations
- 2018Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic statescitations
- 2017Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solventscitations
- 2014Separation of 1,3-substituted imidazoles for quality control of a Lewis acidic ionic liquid for aluminum electroplatingcitations
- 2013Mechanistic Studies of Zinc Electrodeposition from Deep Eutectic Electrolytescitations
- 2011Preparation of CoNi high surface area porous foams by substrate controlled electrodepositioncitations
- 2010Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycolcitations
Places of action
Organizations | Location | People |
---|
article
Mesostructure and physical properties of aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl sulfate doped with divalent sulfate salts in the liquid and the mesomorphic states
Abstract
This is the accepted manuscript of the article. ; [Abstract] This paper extends the study of the induced temperature change in the mesostructure and in the physical properties occurring in aqueous mixtures of the ionic liquid 1-ethyl-3-methyl imidazolium octyl-sulfate [EMIm][OSO4]. For some compositions, these mixtures undergo a phase transition between the liquid (isotropic in the mesoscale) and the mesomorphic state (lyotropic liquid crystalline) at about room temperature. The behavior of mixtures doped with a divalent metal sulfate was investigated in order to observe their applicability as electrolytes. Calcium sulfate salt is almost insoluble even in the 20 wt% water mixture. The magnesium salt, in contrast, can be dissolved up to concentrations of 730 ppm in the same mixture and it has a profound impact on its properties. Six aqueous mixtures (with water content from 10 wt% to 33 wt%) of [EMIm][OSO4] were saturated with magnesium sulfate salt, producing the ternary mixture [EMIm][OSO4] + H2O + MgSO4. Viscosity, density and ionic conductivity for these samples were measured from 10 °C to 90 °C. In addition, SAXS, FTIR, diffussion NMR and Raman spectroscopy of the most interesting samples have been performed, and structural data indicate a transition between a hexagonal lyotropic liquid crystalline phase below and an isotropic solution phase above room temperature. The octyl sulfate anions of the cylindrical micelles in the hexagonal phase are coordinated with water molecules through H-bonds (about four per sulfate anion), while the [EMIm] cations seem to be poorly coordinated and so free to move. Inorganic salt addition reinforces that network, increasing the phase transition temperature. ; The authors are grateful to the technician M. Cabanas for some of the great quality measurements and also to UEM, UEPM and UM of SAI from UDC. This work was supported by MINECO from the Spanish Government (Grants No. MAT2014-57943-C3-1-P, MAT2014-57943-C3-2-P and MAT2014-57943-C3-3-P), COST program Action CM 1206 EXIL, ...