Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Upama, Mushfika B.

  • Google
  • 1
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Interfacial engineering of hole transport layers with metal and dielectric nanoparticles for efficient perovskite solar cells20citations

Places of action

Chart of shared publication
Chan, Kah H.
1 / 1 shared
Wang, Dian
1 / 3 shared
Mahmud, Md. Arafat
1 / 1 shared
Elumalai, Naveen Kumar
1 / 4 shared
Uddin, Ashraf
1 / 7 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Chan, Kah H.
  • Wang, Dian
  • Mahmud, Md. Arafat
  • Elumalai, Naveen Kumar
  • Uddin, Ashraf
OrganizationsLocationPeople

article

Interfacial engineering of hole transport layers with metal and dielectric nanoparticles for efficient perovskite solar cells

  • Chan, Kah H.
  • Wang, Dian
  • Mahmud, Md. Arafat
  • Elumalai, Naveen Kumar
  • Upama, Mushfika B.
  • Uddin, Ashraf
Abstract

<p>In this work, we have demonstrated the incorporation of metal (Ag NPs) and dielectric nanoparticles (SiO<sub>2</sub> NPs) into the hole transporting layers of inverted PSCs using facile deposition methods. Interfacial engineering in PSCs is accomplished by incorporating 50 nm Ag NPs or SiO<sub>2</sub> NPs within the PEDOT:PSS interlayer. Dielectric SiO<sub>2</sub> NPs were used for comparison purposes as a control sample to isolate morphological impacts without plasmonic effects. The photovoltaic performance of the devices significantly improved due to increased charge selectivity and enhanced charge collection properties across the interface (HTL). The recombination resistance of the SiO<sub>2</sub> NP incorporated HTL based PSCs was 193% higher than that of the conventional devices. In-depth analysis using impedance measurements revealed that devices containing Ag or SiO<sub>2</sub> NPs have low electrode polarization and consequently lower charge accumulation at the interface. Lower electrode polarization in the modified devices was also found to improve the charge carrier selectivity, which eventually led to enhanced fill factor and lower parasitic resistances. Interfacial engineering via NPs yielded improvements in the electrical characteristics of non-optical origin, which not only enhanced device performance, but also reduced the hysteresis effects to much lower than in the conventional inverted PSCs based on a pristine PEDOT:PSS interlayer.</p>

Topics
  • nanoparticle
  • Deposition
  • perovskite
  • impedance spectroscopy
  • interfacial