People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fornell, Jordina
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications:citations
- 2023Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications: Composite Characterization and Cytocompatibility Assessment
- 2018Large magnetoelectric effects in electrodeposited nanoporous microdisks driven by effective surface charging and magneto-ionicscitations
- 2018Mapping of magnetic and mechanical properties of Fe-W alloys electrodeposited from Fe(III)-based glycolate-citrate bathcitations
- 2017Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloyscitations
- 2016Single step electrosynthesis of NiMnGa alloyscitations
- 2016Novel Fe-Mn-Si-Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performancescitations
- 2015Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recoverycitations
- 2013Novel Ti-Zr-Hf-Fe nanostructured alloy for biomedical applicationscitations
- 2012Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloyingcitations
Places of action
Organizations | Location | People |
---|
article
Novel Fe-Mn-Si-Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performances
Abstract
© 2016 The Royal Society of Chemistry. Two new Fe-based alloys, Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd, have been fabricated by arc-melting followed by copper mold suction casting. The Fe-30Mn6Si1Pd alloy mainly consists of ϵ-martensite and γ-austenite Fe-rich phases whereas the Fe-10Mn6Si1Pd alloy primarily contains the α-Fe(Mn)-ferrite phase. Additionally, Pd-rich precipitates were detected in both alloys. Good mechanical response was observed by nanoindentation: hardness values around 5.6 GPa and 4.2 GPa and reduced Young's moduli of 125 GPa and 93 GPa were measured for the as-prepared Fe-10Mn6Si1Pd and Fe-30Mn6Si1Pd alloys, respectively. Both alloys are thus harder and exhibit lower Young's modulus than 316L stainless steel, which is one of the most common Fe-based reference materials used for biomedical applications. Compared with the ferromagnetic Fe-10Mn6Si1Pd alloy, the paramagnetic Fe-30Mn6Si1Pd alloy is more appropriate to be used as an implant since it would be compatible for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) analyses. Concerning biocompatibility, the more hydrophilic Fe-10Mn6Si1Pd alloy shows improved cell adhesion but its pronounced ion leaching has a negative effect on the proliferation of cells. The influence of immersion in a simulated body fluid on the composition, microstructure, mechanical and magnetic properties of both alloys is assessed, and the correlation between microstructure evolution and physical properties is discussed.