Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teobaldi, Gilberto

  • Google
  • 7
  • 33
  • 290

Science and Technology Facilities Council

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Magnetohydrodynamic Redeposition of Cations Onto the Anodecitations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations
  • 2017Emergent magnetism at transition-metal–nanocarbon interfaces22citations
  • 2016Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry30citations
  • 2016Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry:a DFT study of lithium titanate spinel surfaces30citations
  • 2015Beating the stoner criterion using molecular interfaces164citations

Places of action

Chart of shared publication
Cespedes, Oscar
5 / 10 shared
Jang, Hansaem
1 / 1 shared
Roe, Daniel
1 / 1 shared
Cowan, Alexander
1 / 1 shared
Hickey, Bj
1 / 4 shared
Prokscha, Thomas
4 / 15 shared
Luetkens, Hubertus
4 / 10 shared
Alghamdi, Shoug
3 / 3 shared
Burnell, Gavin
4 / 9 shared
Flokstra, Machiel
2 / 2 shared
Al Mamari, Fatma
3 / 3 shared
Lee, Stephen
2 / 2 shared
Valvidares, Manuel
2 / 17 shared
Gargiani, Pierluigi
3 / 22 shared
Rogers, Matthew
3 / 5 shared
Moorsom, Timothy
4 / 6 shared
Stewart, Rhea
3 / 6 shared
Ali, Mannan
4 / 4 shared
Hickey, B. J.
2 / 8 shared
Mamari, Fatma Al
1 / 1 shared
Valvidare, Manuel
1 / 1 shared
Flokstra, Machiel Geert
2 / 4 shared
Lee, Stephen Leslie
1 / 14 shared
Morgan, Benjamin
1 / 6 shared
Carrasco, Javier
2 / 5 shared
Morgan, Benjamin J.
1 / 5 shared
Deacon, William
1 / 1 shared
Sterbinsky, George E.
1 / 4 shared
Lee, Steve
1 / 2 shared
Hickey, Bryan J.
1 / 3 shared
Maclaren, Donald A.
1 / 18 shared
Arena, Dario
1 / 1 shared
Wheeler, May
1 / 1 shared
Chart of publication period
2023
2017
2016
2015

Co-Authors (by relevance)

  • Cespedes, Oscar
  • Jang, Hansaem
  • Roe, Daniel
  • Cowan, Alexander
  • Hickey, Bj
  • Prokscha, Thomas
  • Luetkens, Hubertus
  • Alghamdi, Shoug
  • Burnell, Gavin
  • Flokstra, Machiel
  • Al Mamari, Fatma
  • Lee, Stephen
  • Valvidares, Manuel
  • Gargiani, Pierluigi
  • Rogers, Matthew
  • Moorsom, Timothy
  • Stewart, Rhea
  • Ali, Mannan
  • Hickey, B. J.
  • Mamari, Fatma Al
  • Valvidare, Manuel
  • Flokstra, Machiel Geert
  • Lee, Stephen Leslie
  • Morgan, Benjamin
  • Carrasco, Javier
  • Morgan, Benjamin J.
  • Deacon, William
  • Sterbinsky, George E.
  • Lee, Steve
  • Hickey, Bryan J.
  • Maclaren, Donald A.
  • Arena, Dario
  • Wheeler, May
OrganizationsLocationPeople

article

Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry

  • Teobaldi, Gilberto
  • Morgan, Benjamin
  • Carrasco, Javier
Abstract

Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> is a “zero-strain” lithium-ion anode material that shows excellent stability over repeated lithium insertion–extraction cycles. Although lithium (de)intercalation in the bulk material has been well characterised, our understanding of surface atomic- scale–structure and the relationship with electrochemical behaviour is incomplete. To address this, we have modelled the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (111) , Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub> (111) and α-Li<sub>2</sub>TiO<sub>3</sub> (100), (110), and (111) α-Li<sub>2</sub>TiO<sub>3</sub> surfaces using Hubbard-corrected density- functional theory (GGA+<i>U</i>), screening more than 600 stoichiometric Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> and Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub> (111) surfaces. For Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> and Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub> we find Li-terminated surfaces are more stable than mixed Li/Ti-terminated surfaces, which typically reconstruct. For α-Li2TiO3, the (100) surface energy is significantly lower than for the (110) and (111) surfaces, and is competitive with the pristine Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub> (111) surface. Using these stoichiometric surfaces as reference, we also model variation in Li surface coverage as a function of lithium chemical potential. For Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>, the stoichiometric surface is most stable across the full chemical potential range of thermodymamic stability, whereas for Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub>, Li deficient surfaces are stablised at low Li chemical potentials. The highest occupied electronic state for Li<sub>7</sub>Ti<sub>5</sub>O<sub>12</sub> (111) is 2.56 eV below the vacuum energy. This is 0.3 eV smaller than the work function for metallic lithium, indicating an extreme thermodynamic drive for reduction. In contrast, the highest occupied state for the α-Li<sub>2</sub>TiO<sub>3</sub> (100) surface is 4.71 eV below the vacuum level, indicating a substantially lower reduction drive. This result demonstrates how stoichiometry can strongly affect the thermodynamic drive for reduction at metal-oxide–electrode surfaces. In this context, we conclude by discussing the design of highly-reducible metal-oxide electrode coatings, with the potential for controlled solid-electrolyte–interphase formation via equilibrium chemistry, by electrode wetting in the absence of any applied bias.

Topics
  • density
  • impedance spectroscopy
  • surface
  • theory
  • extraction
  • Lithium
  • surface energy