Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ladewig, Bradley

  • Google
  • 2
  • 7
  • 144

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption77citations
  • 2016Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films67citations

Places of action

Chart of shared publication
Shamsaei, Ezzat
1 / 1 shared
Fang, Xi -Ya
1 / 3 shared
Abbasi, Zahra
1 / 2 shared
Lau, Cher Hon
1 / 3 shared
Mardel, James
1 / 4 shared
Konstas, Kristina
1 / 9 shared
Kitchin, Melanie
1 / 2 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Shamsaei, Ezzat
  • Fang, Xi -Ya
  • Abbasi, Zahra
  • Lau, Cher Hon
  • Mardel, James
  • Konstas, Kristina
  • Kitchin, Melanie
OrganizationsLocationPeople

article

Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films

  • Ladewig, Bradley
  • Lau, Cher Hon
  • Mardel, James
  • Konstas, Kristina
  • Kitchin, Melanie
Abstract

Despite the exceptional separation performance of modern glassy mixed matrix membranes, these materials are not being utilized to improve the performance of existing membrane technologies. Nanosized additives can greatly enhance separation performance, and have recently been used to overcome age-related performance loss of high performance MMMs. However nano-additives also compromise the structural integrity of films and little is known on how physical aging affects their mechanical properties over time. A solution for both physical aging and mechanical instability is required before these high performance materials can be utilised in industrial membrane applications. Here, we examine physical aging in mixed matrix membranes through mechanical properties and single gas permeation measurements using three glassy polymers, Matrimid® 5218, poly-1-trimethylsilyl-1-propyne (PTMSP), and a polymer of intrinsic microporosity (PIM-1); and a range of nano-scale additives; silica, PAF-1, UiO- 66, and Ti5UiO-66, each previously shown to enhance gas separation performance. We find polymeradditive interactions strongly influence local physical aging and play a key role in determining the overall material properties of glassy nanocomposite films. Strong interface interactions can slow physical aging, and may not correlate to reinforced or age-stable films. Whereas traditionally ‘incompatible’ nanocomposites exhibit mechanical properties that can improve over time and even outperform their native polymers. Tuning polymer-additive interactions is vital to achieving the physical aging, mechanical stability, and permselectivity requirements of advanced mixed matrix membrane technologies and reducing the enormous global energy cost of separation processes.

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • aging
  • aging