People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Agoritsas, Elisabeth
University of Geneva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Nontrivial rheological exponents in sheared yield stress fluidscitations
- 2017Nontrivial rheological exponents in sheared yield stress fluidscitations
- 2015On the relevance of disorder in athermal amorphous materials under shearcitations
- 2013Static fluctuations of a thick one-dimensional interface in the 1+ 1 directed polymer formulationcitations
- 2013Static fluctuations of a thick 1D interface in the 1+1 Directed Polymer formulationcitations
Places of action
Organizations | Location | People |
---|
article
Nontrivial rheological exponents in sheared yield stress fluids
Abstract
In this work we discuss possible physical origins of non-trivial exponents in the athermal rheology of soft materials at low but finite driving rates. A key ingredient in our scenario is the presence of a self-consistent mechanical noise that stems from the spatial superposition of long-range elastic responses to localized plastically deforming regions. We study analytically a mean-field model, in which this mechanical noise is accounted for by a stress diffusion term coupled to the plastic activity. Within this description we show how a dependence of the shear modulus and/or the local relaxation time on the shear rate introduces corrections to the usual mean-field prediction, concerning the Herschel–Bulkley- type rheological response of exponent 1/2. This feature of the mean-field picture is then shown to be robust with respect to structural disorder and partial relaxation of the local stress. We test this prediction numerically on a mesoscopic lattice model that implements explicitly the long-range elastic response to localized shear transformations, and we conclude on how our scenario might be tested in rheological experiments.