People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jokinen, Ville P.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Microfabrication atomic layer deposited Pt NPs/TiN thin film on silicon as a nanostructure signal Transducer: Electrochemical characterization toward neurotransmitter sensingcitations
- 2021Fabrication of elastic, conductive, wear-resistant superhydrophobic composite materialcitations
- 2020Biofouling affects the redox kinetics of outer and inner sphere probes on carbon surfaces drastically differently - implications to biosensingcitations
- 2019Formation of nanospikes on AISI 420 martensitic stainless steel under gallium ion bombardment
- 2019Chemical analysis using 3D printed glass microfluidicscitations
- 2019Fabrication of micro- and nanopillars from pyrolytic carbon and tetrahedral amorphous carboncitations
- 2019Side-by-side 2D and 3D cell culturing microdevices for drug toxicity screening
- 2017Non-stick properties of thin-film coatings on dental-restorative instrumentscitations
- 2016Non-Lithographic Silicon Micromachining Using Inkjet and Chemical Etchingcitations
- 2016Novel nanostructure replication process for robust superhydrophobic surfacescitations
- 2016Robust hybrid elastomer/metal-oxide superhydrophobic surfacescitations
- 2015Advances in metallization of organically modified ceramics
- 2013Laser direct writing of thick hybrid polymer microstructurescitations
Places of action
Organizations | Location | People |
---|
article
Robust hybrid elastomer/metal-oxide superhydrophobic surfaces
Abstract
<p>We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.</p>