People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Briscoe, Wuge H.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant:Transition from synergy to competition
- 2021Heads or tails:Nanostructure and molecular orientations in organised erucamide surface layerscitations
- 2021Friction at nanopillared polymer surfaces beyond Amontons' laws:Stick-slip amplitude coefficient (SSAC) and multiparametric nanotribological propertiescitations
- 2021Friction at nanopillared polymer surfaces beyond Amontons' lawscitations
- 2021Heads or tailscitations
- 2020Mixed liposomes containing gram-positive bacteria lipidscitations
- 2020Interactions between PAMAM dendrimers and DOPC lipid multilayerscitations
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Multiscale characterisation of single synthetic fibres:Surface morphology and nanomechanical propertiescitations
- 2020Interactions between PAMAM dendrimers and DOPC lipid multilayers:Membrane thinning and structural disordercitations
- 2019Bénard-Marangoni Dendrites upon Evaporation of a Reactive ZnO Nanofluid Dropletcitations
- 2018Surface structure of few layer graphenecitations
- 2017Interfacial and structural characteristics of polyelectrolyte multilayers used as cushions for supported lipid bilayerscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Structure of lipid multilayerscitations
- 2016Structure of lipid multilayers:Via drop casting of aqueous liposome dispersionscitations
- 2016Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrationscitations
- 2016Stability of polymersomes prepared by size exclusion chromatography and extrusioncitations
- 2014In situ X-ray reflectivity studies of molecular and molecular-cluster intercalation within purple membrane filmscitations
- 2014In situ X-ray reflectivity studies of molecular and molecular-cluster intercalation within purple membrane filmscitations
- 2011Lamellar nanocomposite films of purple membrane and poly(acrylate)
- 2010Assembly of poly(methacrylate)/purple membrane lamellar nanocomposite films by intercalation and in situ polymerisationcitations
Places of action
Organizations | Location | People |
---|
article
Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrations
Abstract
Using high pressure small angle X-ray scattering (HP-SAXS), we have studied monoolein (MO) mesophases at 18 wt% hydration in the presence of 10 nm silica nanoparticles (NPs) at NP-lipid number ratios (ν) of 1 × 10 -6 , 1 × 10 -5 and 1 × 10 -4 over the pressure range 1-2700 bar and temperature range 20-60 °C. In the absence of the silica NPs, the pressure-temperature (p-T) phase diagram of monoolein exhibited inverse bicontinuous cubic gyroid (QGII), lamellar alpha (L α ), and lamellar crystalline (L c ) phases. The addition of the NPs significantly altered the p-T phase diagram, changing the pressure (p) and the temperature (T) at which the transitions between these mesophases occurred. In particular, a strong NP concentration effect on the mesophase behaviour was observed. At low NP concentration, the p-T region pervaded by the QGII phase and the L α -QGII mixture increased, and we attribute this behaviour to the NPs forming clusters at the mesophase domain boundaries, encouraging transition to the mesophase with a higher curvature. At high NP concentrations, the QGII phase was no longer observed in the p-T phase diagram. Instead, it was dominated by the lamellar (L) phases until the transition to a fluid isotropic (FI) phase at 60 °C at low pressure. We speculate that NPs formed aggregates with a "chain of pearls" structure at the mesophase domain boundaries, hindering transitions to the mesophases with higher curvatures. These observations were supported by small angle neutron scattering (SANS) and scanning electron microscopy (SEM). Our results have implications to nanocomposite materials and nanoparticle cellular entry where the interactions between NPs and organised lipid structures are an important consideration.