People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Briscoe, Wuge H.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant: Transition from synergy to competitioncitations
- 2022Interfacial complexation of a neutral amphiphilic ‘tardigrade’ co-polymer with a cationic surfactant:Transition from synergy to competition
- 2021Heads or tails:Nanostructure and molecular orientations in organised erucamide surface layerscitations
- 2021Friction at nanopillared polymer surfaces beyond Amontons' laws:Stick-slip amplitude coefficient (SSAC) and multiparametric nanotribological propertiescitations
- 2021Friction at nanopillared polymer surfaces beyond Amontons' lawscitations
- 2021Heads or tailscitations
- 2020Mixed liposomes containing gram-positive bacteria lipidscitations
- 2020Interactions between PAMAM dendrimers and DOPC lipid multilayerscitations
- 2020Synergy, competition, and the “hanging” polymer layer:Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Synergy, competition, and the “hanging” polymer layer: Interactions between a neutral amphiphilic ‘tardigrade’ comb co-polymer with an anionic surfactant at the air-water interfacecitations
- 2020Multiscale characterisation of single synthetic fibres:Surface morphology and nanomechanical propertiescitations
- 2020Interactions between PAMAM dendrimers and DOPC lipid multilayers:Membrane thinning and structural disordercitations
- 2019Bénard-Marangoni Dendrites upon Evaporation of a Reactive ZnO Nanofluid Dropletcitations
- 2018Surface structure of few layer graphenecitations
- 2017Interfacial and structural characteristics of polyelectrolyte multilayers used as cushions for supported lipid bilayerscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin filmscitations
- 2016Structure of lipid multilayerscitations
- 2016Structure of lipid multilayers:Via drop casting of aqueous liposome dispersionscitations
- 2016Hydrophilic nanoparticles stabilising mesophase curvature at low concentration but disrupting mesophase order at higher concentrationscitations
- 2016Stability of polymersomes prepared by size exclusion chromatography and extrusioncitations
- 2014In situ X-ray reflectivity studies of molecular and molecular-cluster intercalation within purple membrane filmscitations
- 2014In situ X-ray reflectivity studies of molecular and molecular-cluster intercalation within purple membrane filmscitations
- 2011Lamellar nanocomposite films of purple membrane and poly(acrylate)
- 2010Assembly of poly(methacrylate)/purple membrane lamellar nanocomposite films by intercalation and in situ polymerisationcitations
Places of action
Organizations | Location | People |
---|
article
Structure of lipid multilayers
Abstract
<p>Understanding the structure of solid supported lipid multilayers is crucial to their application as a platform for novel materials. Conventionally, they are prepared from drop casting or spin coating of lipids dissolved in organic solvents, and lipid multilayers prepared from aqueous media and their structural characterisation have not been reported previously, due to their extremely low lipid solubility (i.e. ∼10<sup>-9</sup> M) in water. Herein, using X-ray reflectivity (XRR) facilitated by a "bending mica" method, we have studied the structural characteristics of dioleoylphosphatidylcholine (DOPC) multilayers prepared via drop casting aqueous small unilamellar and multilamellar vesicle or liposome (i.e. SUV and MLV) dispersions on different surfaces, including mica, positively charged polyethylenimine (PEI) coated mica, and stearic trimethylammonium iodide (STAI) coated mica which exposes a monolayer of hydrocarbon tails. We suggest that DOPC liposomes served both as a delivery matrix where an appreciable lipid concentration in water (∼25 mg mL<sup>-1</sup> or 14 mM) was feasible, and as a structural precursor where the lamellar structure was readily retained on the rupture of the vesicles at the solid surface upon solvent evaporation to facilitate rapid multilayer formation. We find that multilayers on mica from MLVs exhibited polymorphism, whereas the SUV multilayers were well ordered and showed stronger stability against water. The influence of substrate chemistry (i.e. polymer coating, charge and hydrophobicity) on the multilayer structure is discussed in terms of lipid-substrate molecular interactions determining the bilayer packing proximal to the solid-liquid interface, which then had a templating effect on the structure of the bilayers distal from the interface, resulting in the overall different multilayer structural characteristics on different substrates. Such a fundamental understanding of the correlation between the physical parameters that characterise liposomes and substrate chemistry, and the structure of lipid multilayers underpins the potential development of a simple method via an aqueous liposome dispersion route for the inclusion of hydrophilic functional additives (e.g. drugs or nanoparticles) into lipid multilayer based hybrid materials, where tailored structural characteristics are an important consideration.</p>