People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Willhammar, Tom
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024The Nanoscale Ordering of Cellulose in a Hierarchically Structured Hybrid Material Revealed Using Scanning Electron Diffractioncitations
- 2023The Nanoscale Ordering of Cellulose in a Hierarchically Structured Hybrid Material Revealed Using Scanning Electron Diffractioncitations
- 2021A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalystscitations
- 2019A Titanium(IV)-Based Metal-Organic Framework Featuring Defect-Rich Ti-O Sheets as an Oxidative Desulfurization Catalystcitations
- 2017Gel-based morphological design of zirconium metal-organic frameworkscitations
- 2017Gel-Based Morphological Design of Zirconium Metal-organic Frameworkscitations
- 2012Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallographycitations
Places of action
Organizations | Location | People |
---|
article
Gel-based morphological design of zirconium metal-organic frameworks
Abstract
<p>The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr<sup>4+</sup>-based MOFs: UiO-66-X (X = H, NH<sub>2</sub>, NO<sub>2</sub>, (OH)<sub>2</sub>), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO<sub>2</sub>. Electron microscopy, combined with N<sub>2</sub> physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.</p>