People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Denayer, Joeri
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Techno-economic Analysis of Vacuum Pressure Swing Adsorption Process for a Sustainable Upgrading of Biogascitations
- 2024Structure I methane hydrate confined in C8-grafted SBA-15citations
- 2023An Efficient Implementation of Maxwell-Stefan Theory for Modeling Gas Separation Processes
- 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Devicecitations
- 2021Oxygenation and Membrane Oxygenators: Emergence, Evolution and Progress in Material Development and Process Enhancement for Biomedical Applications
- 2020Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorptioncitations
- 2019Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separationscitations
- 2019Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Framework
- 2017Gel-based morphological design of zirconium metal-organic frameworkscitations
- 20173D-printed structured adsorbents for molecular separation
- 2016The effect of crystal diversity of nanoporous materials on mass transfer studies
- 2015The role of crystal diversity in understanding mass transfer in nanoporous materialscitations
- 2015Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillerscitations
- 2013Electrochemical synthesis of metal-organic framework based microseparators
- 2013High pressure, high temperature synthesis of metal-organic frameworks
- 2013New VIV-based metal-organic framework having framework flexibility and high CO2 adsorption capacitycitations
- 2004Adsorption of Polypropylene and Polyethylene on Liquid Chromatographic Column Packingscitations
Places of action
Organizations | Location | People |
---|
article
Gel-based morphological design of zirconium metal-organic frameworks
Abstract
<p>The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero-or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr<sup>4+</sup>-based MOFs: UiO-66-X (X = H, NH<sub>2</sub>, NO<sub>2</sub>, (OH)<sub>2</sub>), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO<sub>2</sub>. Electron microscopy, combined with N<sub>2</sub> physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.</p>