People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breitung, Ben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteriescitations
- 2024Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage
- 2024Delithiation-induced secondary phase formation in Li-rich cathode materials
- 2023Dealing with missing angular sections in nanoCT reconstructions of low contrast polymeric samples employing a mechanical in situ loading stage
- 2023Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
- 2023Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Propertiescitations
- 2022Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolutioncitations
- 2019Thin Films of Thermally Stable Ordered Mesoporous $Rh_{2}O_{3}(I)$ for Visible-Light Photocatalysis and Humidity Sensingcitations
- 2018Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracturecitations
- 2018Formation of nanocrystalline graphene on germaniumcitations
- 2017Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteriescitations
- 2017[Ag₁₁₅S₃₄(SCH₂C₆H₄$^t$Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanoclustercitations
- 2016Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics
- 2013Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storagecitations
Places of action
Organizations | Location | People |
---|
article
[Ag₁₁₅S₃₄(SCH₂C₆H₄$^t$Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster
Abstract
With the aim to synthesize soluble cluster molecules, the silver salt of (4-(tert-butyl)phenyl)methanethiol [AgSCH2C6H4tBu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag115S34(SCH2C6H4tBu)47(dpph)6] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31P/109Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.