Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Biswas, K.

  • Google
  • 13
  • 48
  • 623

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2023Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application6citations
  • 2023Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition41citations
  • 2022Texture Evolution During Hot Compression of CoCuFeMnNi Complex Concentrated Alloy Using Neutron Diffraction and Crystal Plasticity Simulations3citations
  • 2021Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling3citations
  • 2021A Perspective on the Catalysis Using the High Entropy Alloys182citations
  • 2021Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)154citations
  • 2018Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots73citations
  • 2018Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy28citations
  • 2016Green synthesis of Ag nanoparticles in large quantity by cryomilling47citations
  • 2006Fabrication of bulk amorphous Fe<inf>67</inf>Co<inf>9.5</inf>Nd <inf>3</inf>Dy<inf>0.5</inf>B<inf>20</inf> alloy by hot extrusion of ribbon and study of the magnetic properties10citations
  • 2006Glass-forming ability and fragility parameter of amorphous Fe <inf>67</inf>Co<inf>9.5</inf>Nd<inf>3</inf>Dy<inf>0.5</inf>B<inf>20</inf>15citations
  • 2006On the fragility of Cu<inf>47</inf>Ti<inf>33</inf>Zr<inf>11</inf>Ni <inf>8</inf>Si<inf>1</inf> metallic glass18citations
  • 2005Crystallization kinetics of amorphous Fe<inf>67</inf>Co <inf>9.5</inf>Nd<inf>3</inf>Dy<inf>0.5</inf>B<inf>20</inf>43citations

Places of action

Chart of shared publication
Jha, S. R.
1 / 1 shared
Halder, A.
2 / 3 shared
Tiwary, C. S.
3 / 3 shared
Madan, C.
1 / 1 shared
Singh, A.
1 / 32 shared
Mitra, R.
1 / 1 shared
Sánchez-Grande, A.
1 / 1 shared
Müllen, K.
1 / 37 shared
Fasel, R.
1 / 7 shared
Mishra, S.
1 / 34 shared
Lauwaet, K.
1 / 1 shared
Mutombo, P.
1 / 3 shared
Narita, A.
1 / 2 shared
Écija, D.
1 / 1 shared
Miranda, R.
1 / 20 shared
Soler, D.
1 / 1 shared
Yao, X.
1 / 4 shared
Eimre, K.
1 / 3 shared
Pignedoli, C. A.
1 / 1 shared
Chen, Q.
1 / 16 shared
Martín-Fuentes, C.
1 / 1 shared
Jelínek, P.
1 / 4 shared
Urgel, J. I.
1 / 1 shared
Ruffieux, P.
1 / 4 shared
Gallego, José M.
1 / 4 shared
Gan, W.
1 / 9 shared
Sonkusare, R.
1 / 3 shared
Brokmeier, H.
1 / 3 shared
Gurao, N.
2 / 2 shared
Sharma, S.
1 / 31 shared
Yeah, J-W.
1 / 1 shared
Singh, A. K.
1 / 8 shared
Kumar, R.
1 / 56 shared
Sharma, L.
1 / 3 shared
Parui, A.
1 / 1 shared
Das, R.
1 / 6 shared
Tiwary, C.
1 / 1 shared
Das, S.
1 / 43 shared
Kumar, J.
1 / 3 shared
Gupta, R. K.
1 / 14 shared
Roth, S.
1 / 94 shared
Schultz, L.
2 / 279 shared
Eckert, Jürgen
4 / 1035 shared
Ram, S.
3 / 19 shared
Venkataraman, S.
2 / 17 shared
Zhang, W. Y.
1 / 2 shared
Sordelet, D. J.
1 / 19 shared
Wei, B. C.
1 / 2 shared
Chart of publication period
2023
2022
2021
2018
2016
2006
2005

Co-Authors (by relevance)

  • Jha, S. R.
  • Halder, A.
  • Tiwary, C. S.
  • Madan, C.
  • Singh, A.
  • Mitra, R.
  • Sánchez-Grande, A.
  • Müllen, K.
  • Fasel, R.
  • Mishra, S.
  • Lauwaet, K.
  • Mutombo, P.
  • Narita, A.
  • Écija, D.
  • Miranda, R.
  • Soler, D.
  • Yao, X.
  • Eimre, K.
  • Pignedoli, C. A.
  • Chen, Q.
  • Martín-Fuentes, C.
  • Jelínek, P.
  • Urgel, J. I.
  • Ruffieux, P.
  • Gallego, José M.
  • Gan, W.
  • Sonkusare, R.
  • Brokmeier, H.
  • Gurao, N.
  • Sharma, S.
  • Yeah, J-W.
  • Singh, A. K.
  • Kumar, R.
  • Sharma, L.
  • Parui, A.
  • Das, R.
  • Tiwary, C.
  • Das, S.
  • Kumar, J.
  • Gupta, R. K.
  • Roth, S.
  • Schultz, L.
  • Eckert, Jürgen
  • Ram, S.
  • Venkataraman, S.
  • Zhang, W. Y.
  • Sordelet, D. J.
  • Wei, B. C.
OrganizationsLocationPeople

article

Green synthesis of Ag nanoparticles in large quantity by cryomilling

  • Biswas, K.
  • Gupta, R. K.
Abstract

Most of the synthetic methods for the preparation of Ag nanoparticles (Ag NPs) involve wet chemical synthesis, in which hazardous chemicals are used and the NPs are further stabilized by a surfactant. The presence of a surfactant is detrimental to the purity as well as to the native properties of the Ag NPs. The present study reports a unique technique to prepare ultrapure free-standing Ag NPs in large quantities without the use of any hazardous chemicals. This has been achieved by cryomilling. Note that cryomilling is a cost effective method to prepare metal NPs, involving ball milling below 160 ± 10 °C under a protective Ar atmosphere. The experimental results reveal that it is possible to obtain Ag NPs with a narrow size distribution (4–8 nm). The level of contamination (34 ppb of W) in the nanoparticles was estimated by EPMA, whereas the ultra-high purity of the Ag NPs was confirmed by ICP-OES and XPS. The surfactant-free Ag NPs were also stable at elevated temperatures (400 °C) and exhibited free-standing nature in liquids including ethanol, methanol, and water. The results have been discussed based on the low-temperature deformation behaviour of Ag and the electrostatic stabilization of highly pure Ag NPs in different polar liquids.

Topics
  • nanoparticle
  • impedance spectroscopy
  • x-ray photoelectron spectroscopy
  • milling
  • ball milling
  • ball milling
  • surfactant
  • atomic emission spectroscopy
  • electron probe micro analysis