People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taurino, Irene
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Highly-stable Li+ ion-selective electrodes based on noble metal nanostructured layers as solid-contacts.citations
- 2016Platinum nanopetal-based potassium sensors for acute cell death monitoringcitations
- 2014Direct and selective synthesis of a wide range of carbon nanomaterials by CVD at CMOS compatible temperatures
- 2014High-performance multipanel biosensors based on a selective integration of nanographite petals.citations
- 2013Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes.citations
Places of action
Organizations | Location | People |
---|
article
Platinum nanopetal-based potassium sensors for acute cell death monitoring
Abstract
Growing interest in the role of ions as cell death regulators has led to the consideration of K+, which plays a major role in events such as necrosis, apoptosis and osmotic shock. These mechanisms induce effluxes of K+, which can be measured to monitor such cellular events. In this work, we present a fast and simple template-free electrodeposition method for modifying electrodes on microfabricated Si-based platforms with Pt nanopetals. K+-selective electrodes were constructed by coupling such newly obtained Pt nanopetals, which were used as a solid contact, with PVC (polyvinyl chloride) K+-selective membranes. The drift over time was reduced by three orders of magnitude from several mV h−1 for bare electrodes to tens of μV h−1 when Pt nanopetals were used as an intermediate layer between the electrode and the selective membrane. The improved potential stability is comparable to the best values obtained by using solid-contact ion-selective electrodes based on other nanomaterials. The sensors exhibited near-Nernstian behavior and high selectivity for K+. By studying cell viability in relation to K+ measurements, we established a new correlation between the level of ions and the cell viability upon exposure to both osmotic shock and treatment with acetaminophen. The present method for the continuous and non-invasive monitoring of cell death in a bioreactor has potential applications in various biomedical domains.