People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dolatshahi-Pirouz, Alireza
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels:Durable Conductive Biomaterials for Electroactive Tissues and Interfacescitations
- 2024Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfacescitations
- 2023Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healingcitations
- 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interfacecitations
- 2022Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repaircitations
- 2021Design and construction of a novel measurement device for mechanical characterization of hydrogelscitations
- 2021Design and construction of a novel measurement device for mechanical characterization of hydrogels:A case studycitations
- 2021Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defectscitations
- 2021Rheological characterization of 3D printable geopolymerscitations
- 20193D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineeringcitations
- 20193D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineeringcitations
- 2019Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?citations
- 2019Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systemscitations
- 2019Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatincitations
- 2017Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials that are Compatible with Load-Bearing and Electroactive Tissuescitations
- 2017Nanoreinforced hydrogels for tissue engineering:Biomaterials that are compatible with load-bearing and electroactive tissuescitations
- 2016Injectable shear-thinning nanoengineered hydrogels for stem cell deliverycitations
- 2011Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithographycitations
- 2010Synthesis of functional nanomaterials via colloidal mask templating and glancing angle deposition (GLAD)”
Places of action
Organizations | Location | People |
---|
article
Injectable shear-thinning nanoengineered hydrogels for stem cell delivery
Abstract
Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.