Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almutlaq, Nasser

  • Google
  • 1
  • 2
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Identification of a positive-Seebeck-coefficient exohedral fullerene9citations

Places of action

Chart of shared publication
Lambert, Colin John
1 / 31 shared
Bailey, Steven William Dennis
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Lambert, Colin John
  • Bailey, Steven William Dennis
OrganizationsLocationPeople

article

Identification of a positive-Seebeck-coefficient exohedral fullerene

  • Lambert, Colin John
  • Bailey, Steven William Dennis
  • Almutlaq, Nasser
Abstract

If fullerene-based thermoelectricity is to become a viable technology, then fullerenes exhibiting both positive and negative Seebeck coefficients are needed. C60 is known to have a negative Seebeck coefficient and therefore in this paper we address the challenge of identifying a positive-Seebeck-coefficient fullerene. We investigated the thermoelectric properties of single-molecule junctions of the exohedral fullerene C50Cl10 connected to gold electrodes and found that it indeed possesses a positive Seebeck coefficient. Furthermore, in common with C60, the Seebeck coefficient can be increased by placing more than one C50Cl10 in series. For a single C50Cl10, we find S = +8 μV K−1 and for two C50Cl10's in series we find S = +30 μV K−1. We also find that the C50Cl10 monomer and dimer have power factors of 0.5 × 10−5 W m−1 K−2 and 6.0 × 10−5 W m−1 K−2 respectively. These results demonstrate that exohedral fullerenes provide a new class of thermoelectric materials with desirable properties, which complement those of all-carbon fullerenes, thereby enabling the boosting of the thermovoltage in all-fullerene tandem structures.

Topics
  • impedance spectroscopy
  • Carbon
  • gold