Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chong, Harold

  • Google
  • 10
  • 36
  • 107

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2020Laser-driven phase segregation and tailoring of compositionally graded microstructures in Si-Ge nanoscale thin films8citations
  • 2020Laser processed semiconductors for integrated photonic devicescitations
  • 2020Laser-written silicon-germanium alloy microstructures with tunable compositionally graded profilescitations
  • 2020Multi-stack insulator to minimise threshold voltage drift in ZnO FET sensors operating in ionic solutions2citations
  • 2019Laser processing of amorphous semiconductors on planar substrates for photonic and optoelectronic applicationscitations
  • 2017Laser annealing of low temperature deposited silicon waveguides1citations
  • 2016Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates67citations
  • 2015Characterisation of nanographite for MEMS resonatorscitations
  • 2015A silicon/lithium niobate hybrid photonic material platform produced by laser processingcitations
  • 2012Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications29citations

Places of action

Chart of shared publication
Aktaş, Ozan
4 / 8 shared
Macfarquhar, Stuart, James
4 / 4 shared
Peacock, Anna C.
6 / 47 shared
Mittal, Vinita
4 / 8 shared
Oo, Swe
4 / 4 shared
Mailis, Sakellaris
2 / 7 shared
Runge, Antoine
3 / 7 shared
Franz, Yohann
4 / 7 shared
Oo, Swe Zin
1 / 1 shared
Ebert, Martin
1 / 7 shared
Reynolds, Jamie
1 / 1 shared
Sun, Kai
2 / 7 shared
De Planque, Maurits
1 / 1 shared
Joshua, Daniel Akrofi
1 / 1 shared
Hu, Ruoyu
1 / 1 shared
Tarazona, Antulio
2 / 3 shared
Khokhar, Ali
1 / 6 shared
Jimenez, Gregorio Martinez
2 / 2 shared
Healy, Noel
2 / 12 shared
Schmidt, Marek E.
1 / 2 shared
Sun, Jian
1 / 4 shared
Mizuta, Hiroshi
1 / 2 shared
Muruganathan, Manoharan
1 / 2 shared
Oshea, S. J.
1 / 1 shared
Mcbride, John Willaim
1 / 20 shared
Pu, Suan-Hui
1 / 1 shared
Fishlock, Sam
1 / 2 shared
Grech, David
1 / 1 shared
Zisis, Greg
1 / 1 shared
Gunn, R.
1 / 2 shared
Hakim, M. M. A.
1 / 2 shared
Sultan, S. M.
1 / 1 shared
Masaud, T. B.
1 / 1 shared
Clark, O. D.
1 / 1 shared
Fang, Q.
1 / 5 shared
Ashburn, P.
1 / 13 shared
Chart of publication period
2020
2019
2017
2016
2015
2012

Co-Authors (by relevance)

  • Aktaş, Ozan
  • Macfarquhar, Stuart, James
  • Peacock, Anna C.
  • Mittal, Vinita
  • Oo, Swe
  • Mailis, Sakellaris
  • Runge, Antoine
  • Franz, Yohann
  • Oo, Swe Zin
  • Ebert, Martin
  • Reynolds, Jamie
  • Sun, Kai
  • De Planque, Maurits
  • Joshua, Daniel Akrofi
  • Hu, Ruoyu
  • Tarazona, Antulio
  • Khokhar, Ali
  • Jimenez, Gregorio Martinez
  • Healy, Noel
  • Schmidt, Marek E.
  • Sun, Jian
  • Mizuta, Hiroshi
  • Muruganathan, Manoharan
  • Oshea, S. J.
  • Mcbride, John Willaim
  • Pu, Suan-Hui
  • Fishlock, Sam
  • Grech, David
  • Zisis, Greg
  • Gunn, R.
  • Hakim, M. M. A.
  • Sultan, S. M.
  • Masaud, T. B.
  • Clark, O. D.
  • Fang, Q.
  • Ashburn, P.
OrganizationsLocationPeople

article

Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates

  • Schmidt, Marek E.
  • Sun, Jian
  • Mizuta, Hiroshi
  • Muruganathan, Manoharan
  • Chong, Harold
Abstract

The direct growth of graphene on insulating substrate is highly desirable for the commercial scale integration of graphene due to the potential lower cost and better process control. We report a simple, direct deposition of nanocrystalline graphene (NCG) on insulating substrates via catalyst-free plasma-enhanced chemical vapor deposition at relatively low temperature of ~800 °C. The parametric study of the process conditions that we conducted reveals the deposition mechanism and allows us to grow high quality films. Based on such film, we demonstrate the fabrication of a large-scale array of nanoelectromechanical (NEM) switches using regular thin film process techniques, with no transfer required. Thanks to ultra-low thickness, good uniformity, and high Young's modulus of ~0.86 TPa, NCG is considered as a promising material for high performance NEM devices. The high performance is highlighted for the NCG switches, e.g. low pull-in voltage <3 V, reversible operations, minimal leakage current of ~1 pA, and high on/off ratio of ~10 5 .

Topics
  • impedance spectroscopy
  • thin film
  • chemical vapor deposition