People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Manuel Bermudez Garcia, Jm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A simple in situ synthesis of magnetic M@CNTs by thermolysis of the hybrid perovskite [TPrA][M(dca)(3)]
Abstract
In this work, the incorporation of dicyanamide building blocks in organic-inorganic hybrid compounds is found to be a promising strategy for the synthesis of multiwalled carbon nanotubes embedded with magnetic nanoparticles (M@CNTs). Following a novel one-step, scalable and fast synthetic route, M@CNTs are obtained by simple calcination of the organic-inorganic hybrid perovskite [TPrA][M(dca)(3)] (TPrA = tetrapropylammonium, M = Ni2+ and Co2+, dca = dicyanamide). The resulting M@CNTs (M = Ni and Co) display a regular morphology and an essentially mesoporous network of similar to 250 m(2) g(-1), whereas the Co@CNT composite displays a broad pore size distribution (PSD) up to 6 nm, Ni@CNTs show a strictly controlled unimodal PSD, centered at around 5 nm. Monitoring of their thermal decomposition by X-ray diffraction, electron microscopy, thermogravimetric and spectroscopic analyses allows proposing a calcination mechanism and establishing the conditions to obtain optimal materials. Moreover, magnetization studies reveal a ferromagnetic behaviour of the obtained M@CNTs, with small coercive fields due to the size of the magnetic nanoparticles. In addition, preliminary assays of oil adsorption-desorption capacity reveal a promising potential for spilled oil recovery using this easily-synthesized materials. All these physicochemical properties make these composites good candidates for other nitrogen-rich CNT common applications.