People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Correa-Baena, Juan-Pablo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Synergistic Role of Water and Oxygen Leads to Degradation in Formamidinium-Based Halide Perovskitescitations
- 2022An open-access database and analysis tool for perovskite solar cells based on the FAIR data principlescitations
- 2021An open-access database and analysis tool for perovskite solar cells based on the FAIR data principlescitations
- 2021Polymers and interfacial modifiers for durable perovskite solar cells: a reviewcitations
- 2020Moisture-Induced Crystallographic Reorientations and Effects on Charge Carrier Extraction in Metal Halide Perovskite Solar Cellscitations
- 2018Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performancecitations
- 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cellscitations
- 2017Monolithic CIGS-perovskite tandem cell for optimal light harvesting without current matchingcitations
- 2016Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cellscitations
- 2016Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
Abstract
Perovskites have been demonstrated in solar cells with power conversion efficiency well above 20%, which makes them one of the strongest contenders for the next generation photovoltaics. While there are no concerns about their efficiency, very little is known about their stability under illumination and load.Ionic defects and their migration in the perovskite crystal lattice are one of the most alarming sources of degradation, which can potentially prevent the commercialization of perovskite solar cells (PSCs).In this work, we provide direct evidence of electric field-induced ionic defect migration and we isolate their effect on the long-term performance of state-of-the-art devices.Supported by modelling, we demonstrate that ionic defects, migrating on timescales significantly longer (above 103 s) than what has so far been explored (from 10-1 to 102 s), abate the initial efficiency by 10-15% after several hours of operation at the maximum power point.Though these losses are not negligible, we prove that the initial efficiency is fully recovered when leaving the device in the dark for a comparable amount of time.We verified this behaviour over several cycles resembling day/night phases, thus probing the stability of PSCs under native working conditions.This unusual behaviour reveals, that research and industrial standards currently in use to assess the performance and the stability of solar cells need to be adjusted for PSCs.Our work paves the way towards much needed new testing protocols and figures of merit specifically designed for PSCs.