People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Richardson, Giles
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristicscitations
- 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristicscitations
- 2020Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion modelcitations
- 2019How transport layer properties affect perovskite solar cell performancecitations
- 2019How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelcitations
- 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cellscitations
- 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodescitations
- 2016Drift diffusion modelling of charge transport in photovoltaic devicescitations
- 2015Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al O Buffer Layercitations
- 2009An asymptotic analysis of the buckling of a highly shear-resistant vesiclecitations
- 2000The mixed boundary condition for the Ginzburg Landau model in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
Abstract
Perovskites have been demonstrated in solar cells with power conversion efficiency well above 20%, which makes them one of the strongest contenders for the next generation photovoltaics. While there are no concerns about their efficiency, very little is known about their stability under illumination and load.Ionic defects and their migration in the perovskite crystal lattice are one of the most alarming sources of degradation, which can potentially prevent the commercialization of perovskite solar cells (PSCs).In this work, we provide direct evidence of electric field-induced ionic defect migration and we isolate their effect on the long-term performance of state-of-the-art devices.Supported by modelling, we demonstrate that ionic defects, migrating on timescales significantly longer (above 103 s) than what has so far been explored (from 10-1 to 102 s), abate the initial efficiency by 10-15% after several hours of operation at the maximum power point.Though these losses are not negligible, we prove that the initial efficiency is fully recovered when leaving the device in the dark for a comparable amount of time.We verified this behaviour over several cycles resembling day/night phases, thus probing the stability of PSCs under native working conditions.This unusual behaviour reveals, that research and industrial standards currently in use to assess the performance and the stability of solar cells need to be adjusted for PSCs.Our work paves the way towards much needed new testing protocols and figures of merit specifically designed for PSCs.