People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Jin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Probing quantum floating phases in Rydberg atom arrayscitations
- 2024Design and 3D Printing of Polyacrylonitrile‐Derived Nanostructured Carbon Architecturescitations
- 2022Soft Liquid Metal Infused Conductive Spongescitations
- 2022Induction heating for the removal of liquid metal-based implant mimics: a proof-of-conceptcitations
- 2020Carbonization of low thermal stability polymers at the interface of liquid metalscitations
- 2020Grain boundary mobilities in polycrystalscitations
- 2018Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An “All-Chemical” Deposition Approach toward 3D Nanoengineered Composite Layers
- 2018Three-dimensional grain growth in pure iron. Part I. statistics on the grain levelcitations
- 2018Fracture and fatigue behaviour of epoxy nanocomposites containing 1-D and 2-D nanoscale carbon fillerscitations
- 2018Electrodeposited Ni-based magnetic mesoporous films as smart surfaces for atomic layer deposition: an 'all-chemical' deposition approach toward 3D nanoengineered composite layerscitations
- 2017Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capabilitycitations
- 2017Using carbon nanofibre Sensors for in-situ detection and monitoring of disbonds in bonded composite jointscitations
- 2017Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductorscitations
- 2017Determining material parameters using phase-field simulations and experimentscitations
- 2017Voltage-induced coercivity reduction in nanoporous alloy films : a boost towards energy-efficient magnetic actuationcitations
- 2016A novel route for tethering graphene with iron oxide and its magnetic field alignment in polymer nanocompositescitations
- 2016Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carboncitations
- 2016Efficient perovskite solar cells by metal ion dopingcitations
- 2016Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic propertiescitations
- 2016Nanocasting synthesis of mesoporous SnO₂ with a tunable ferromagnetic response through Ni loadingcitations
- 2016Nanomechanical behaviour of open-cell nanoporous metals: homogeneous versus thickness-dependent porositycitations
- 2015Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocompositescitations
- 2015Epoxy nanocomposites with aligned carbon nanofillers by external electric fields
- 2015Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibrescitations
Places of action
Organizations | Location | People |
---|
article
Efficient perovskite solar cells by metal ion doping
Abstract
<p>Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices.</p>