People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hill, Michael S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Alkali Metal Reduction of Alkali Metal Cationscitations
- 2021Tin(II) Ureide Complexes:Synthesis, Structural Chemistry and Evaluation as SnO precursorscitations
- 2021Tin(II) Ureide Complexescitations
- 2019Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursorscitations
- 2018Tin Guanidinato Complexes: Oxidative Control of Sn, SnS, SnSe and SnTe Thin Film Depositioncitations
- 2017Deposition of SnS Thin Films from Sn(II) Thioamidate Precursorscitations
- 2017Aerosol-Assisted chemical vapor deposition of cds from xanthate single source precursorscitations
- 2016Aerosol-assisted CVD of SnO from stannous alkoxide precursorscitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me 2 M{tfacnac}] [M = Al, Ga, In; Htfacnac = F 3 CC(OH)CHC(CH 3 )NCH 2 CH 2 OCH 3 ]citations
- 2016Homoleptic zirconium amidatescitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me2M{tfacnac}] [M = Al, Ga, In; Htfacnac = F3CC(OH)CHC(CH3)NCH2CH2OCH3]citations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursorcitations
- 2014Single-source AACVD of composite cobalt-silicon oxide thin filmscitations
- 2014The first crystallographically-characterised Cu(II) xanthatecitations
- 2013Influence of crystallinity and energetics on charge separation in polymer–inorganic nanocomposite films for solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Aerosol-assisted CVD of SnO from stannous alkoxide precursors
Abstract
<p>The stannous alkoxides [Sn(OR)<sub>2</sub>] [R = i-Pr, t-Bu, C(Et)Me<sub>2</sub>, CHPh<sub>2</sub>, CPh<sub>3</sub>] have been synthesised by reaction of Sn(NR′<sub>2</sub>)<sub>2</sub> with two equivalents of HOR [R′ = Me, R = i-Pr; R′ = SiMe<sub>3</sub>, R = t-Bu, C(Et)Me<sub>2</sub>, CHPh<sub>2</sub>, CPh<sub>3</sub>]. Single crystal X-ray diffraction analysis of the bis(diphenylmethoxide) (4) and bis(triphenylmethoxide) (5) species have shown them to comprise three-coordinate Sn(ii) centres through dimerisation in the solid state with the alkoxide units adopting transoid and cisoid configurations across the {Sn<sub>2</sub>O<sub>2</sub>} cores respectively. Thermogravimetric analysis indicates clean decomposition and some evidence of volatility at temperatures >200 °C for all three aliphatic alkoxides, whereas both the diphenyl- and triphenylmethoxide compounds provide higher decomposition temperatures and, for the triphenylmethoxide derivative, a residual mass consistent with the formation of a carbon-containing residue. The previously reported iso-propoxide (1) and tert-butoxide (2) derivatives have been utilised in toluene solution to deposit SnO thin films by aerosol-assisted chemical vapour deposition (AACVD) on glass at temperatures between 300 and 450 °C. While SnO is deposited under hot wall conditions as the only identifiable phase by p-XRD and Raman spectroscopy for both precursors, morphological analysis by SEM reveals inferior substrate coverage in comparison to previously reported ureide-based precursor systems.</p>