People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stingelin, Natalie
University of Bordeaux
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Using spatial confinement to decipher polymorphism in the organic semiconductor p-DTS(FBTTh2)2citations
- 2023Conjugated polymer blends for faster organic mixed conductorscitations
- 2023Mission Immiscible: Overcoming the Miscibility Limit of Semiconducting:Ferroelectric Polymer Blends via Vitrificationcitations
- 2022Conjugated Polymer Blends for Faster Organic Mixed Conductorscitations
- 2021Improving molecular alignment and charge percolation in semiconducting polymer films with highly localized electronic states through tailored thermal annealingcitations
- 2020High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistorscitations
- 2020Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‐Step Molecular Engineeringcitations
- 2020The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cellscitations
- 2019Managing local order in conjugated polymer blends via polarity contrastcitations
- 2019The Role of Morphology in Optically Switchable Transistors Based on a Photochromic Molecule/p‐Type Polymer Semiconductor Blendcitations
- 2015Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blendscitations
- 2015Microstructured organic ferroelectric thin film capacitors by solution micromoldingcitations
- 2015Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transportcitations
- 2014Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processescitations
- 2014Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges
- 2014Bis(triisopropylsilylethynyl)pentacene/Au(111) interface: Coupling, molecular orientation, and thermal stabilitycitations
- 2013Microstructure formation in molecular and polymer semiconductors assisted by nucleation agentscitations
- 2012Processing and Low Voltage Switching of Organic Ferroelectric Phase-Separated Bistable Diodescitations
- 2012Ferroelectric Phase Diagram of PVDF:PMMAcitations
- 2011Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yieldcitations
- 2011Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymerscitations
- 2011Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin-Film Transistorscitations
- 2011Wire-bar coating of semiconducting polythiophene / insulating polyethylene blend thin films for organic transistors.citations
Places of action
Organizations | Location | People |
---|
article
Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends
Abstract
Polymer blends are broadly important in chemical science and chemical engineering and have led to a wide range of commercial products, however their precise structure and phase morphology is often not well understood. Here we show for the first time that π-conjugated polytellurophenes and high-density polyethylene form blends that can serve as active layers in field-effect transistor devices and can be characterized by a variety of element-specific imaging techniques such as STEM and EDX. Changing the hydrocarbon content and degree of branching on the polytellurophene side-chain leads to a variety of blend structures, and these variations can be readily visualized. Characterization by electron microscopy is complemented by topographic and X-ray methods to establish a nano- to micro-scale picture of these systems. We find that blends that possess microscale networks function best as electronic devices; however, contrary to previous notions a strong correlation between nanofiber formation and electrical performance is not observed. Our work demonstrates that use of organometallic polymers assists in clarifying relevant structure–property–function relationships in multicomponent systems such as semiconductor:insulator blends and sheds light on the structure development in polymer:polymer blends including crystallization, phase separation, and formation of supramolecular arrangements.