Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brauer, Delia S.

  • Google
  • 23
  • 66
  • 649

Friedrich Schiller University Jena

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (23/23 displayed)

  • 2024Dispersion, ionic bonding and vibrational shifts in phospho-aluminosilicate glasses †citations
  • 2024Dispersion, ionic bonding and vibrational shifts in phospho-aluminosilicate glassescitations
  • 2024Dispersion, ionic bonding and vibrational shifts in phospho-aluminosilicate glassescitations
  • 2024Tailoring the Mechanical Properties of Metaluminous Aluminosilicate Glasses by Phosphate Incorporationcitations
  • 2024Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructurecitations
  • 2024Phosphate/Silicate Ratio Allows for Fine-Tuning of Bioactive Glass Crystallisation and Glass-Ceramic Microstructurecitations
  • 2023Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientation3citations
  • 2023Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientation3citations
  • 2023Surface crystallization of barium fresnoite glass : annealing atmosphere, crystal morphology and orientation3citations
  • 2021Crystallization study of sol–gel derived 13-93 bioactive glass powder24citations
  • 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
  • 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses6citations
  • 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
  • 2020New insights into the crystallization process of sol‐gel–derived 45S5 bioactive glass39citations
  • 2020New insights into the crystallization process of sol‐gel–derived 45S5 bioactive glass39citations
  • 2020Tailoring the mechanical properties of metaluminous aluminosilicate glasses by phosphate incorporation15citations
  • 2020Mg or Zn for Ca substitution improves the sintering of bioglass 45S533citations
  • 2020Influence of vanadium on optical and mechanical properties of aluminosilicate glasses24citations
  • 2020Calorimetric approach to assess the apatite-forming capacity of bioactive glasses2citations
  • 201831P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses46citations
  • 2016Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume94citations
  • 2016Bioglass and bioactive glasses and their impact on healthcare280citations
  • 2015Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH38citations

Places of action

Chart of shared publication
Kamitsos, Efstratios I.
5 / 14 shared
Dellith, Jan
3 / 15 shared
Lindner, Florian
3 / 4 shared
De Ligny, Dominique
4 / 137 shared
Scheffler, Franziska
6 / 8 shared
Griebenow, Kristin
3 / 4 shared
Van Wüllen, Leo
5 / 8 shared
Grammes, Thilo
5 / 7 shared
Aichele, Claudia
3 / 4 shared
Mathew, Dintu
3 / 3 shared
Wüllen, Leo Van
2 / 2 shared
Ligny, Dominique De
2 / 14 shared
Durst, Karsten
2 / 31 shared
Limbach, René
2 / 6 shared
Wondraczek, Lothar
2 / 48 shared
Bruns, Sebastian
2 / 11 shared
Patzig, Christian
2 / 5 shared
Contreras Jaimes, Altair T.
3 / 3 shared
De Pablos-Martín, Araceli
2 / 3 shared
Juliana, Martins De Souza E. Silva
4 / 7 shared
Karpukhina, Natalia
5 / 8 shared
Kirste, Gloria
5 / 7 shared
Massera, Jonathan
5 / 45 shared
Hill, Robert G.
5 / 16 shared
Jaimes, Altair T. Contreras
5 / 5 shared
De Pablos Martin, Araceli
1 / 2 shared
Busch, Richard
3 / 4 shared
Tielemann, Christopher
3 / 6 shared
Fleck, Mirjam
3 / 3 shared
Gnecco, Enrico
3 / 8 shared
Müller, Ralf
3 / 47 shared
Casado, Santiago
2 / 3 shared
Berthold, Lutz
1 / 4 shared
Hurle, Katrin
3 / 13 shared
Boccaccini, Ar
3 / 302 shared
Pablos-Martín, Araceli De
1 / 3 shared
Silva, Juliana Martins De Souza E.
2 / 6 shared
Sitarz, Maciej
1 / 12 shared
Nawaz, Qaisar
3 / 25 shared
Selle, Susanne
3 / 12 shared
Juliana Martins, Souza E. Silva
1 / 1 shared
Pablos Martín, Araceli
1 / 1 shared
Juliana Martins, De Souza E. Silva
1 / 1 shared
De Pablosmartín, Araceli
2 / 2 shared
Pablosmartín, Araceli De
1 / 1 shared
Boccaccini, Aldo R.
1 / 77 shared
Blochberger, M.
1 / 1 shared
Hupa, Leena
4 / 90 shared
Scheffler, F.
1 / 3 shared
Wetzel, R.
1 / 2 shared
Uesbeck, Tobias
1 / 4 shared
Cicconi, Maria Rita
1 / 24 shared
Lu, Zhuorui
1 / 2 shared
Schuhladen, Katharina
1 / 11 shared
Khattech, Ismail
1 / 5 shared
Bechrifa, Ali
1 / 2 shared
Elabidine, Mohamed Zine
1 / 1 shared
Cherbib, Mohamed Atef
1 / 2 shared
Mandlule, Armando
1 / 1 shared
Döhler, Franziska
1 / 1 shared
Friedrich, Manfred
1 / 2 shared
Brückner, Raika
1 / 1 shared
Tylkowski, Maxi
1 / 1 shared
Jones, Julian R.
1 / 20 shared
Greenspan, David C.
1 / 1 shared
Blochberger, Max
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2018
2016
2015

Co-Authors (by relevance)

  • Kamitsos, Efstratios I.
  • Dellith, Jan
  • Lindner, Florian
  • De Ligny, Dominique
  • Scheffler, Franziska
  • Griebenow, Kristin
  • Van Wüllen, Leo
  • Grammes, Thilo
  • Aichele, Claudia
  • Mathew, Dintu
  • Wüllen, Leo Van
  • Ligny, Dominique De
  • Durst, Karsten
  • Limbach, René
  • Wondraczek, Lothar
  • Bruns, Sebastian
  • Patzig, Christian
  • Contreras Jaimes, Altair T.
  • De Pablos-Martín, Araceli
  • Juliana, Martins De Souza E. Silva
  • Karpukhina, Natalia
  • Kirste, Gloria
  • Massera, Jonathan
  • Hill, Robert G.
  • Jaimes, Altair T. Contreras
  • De Pablos Martin, Araceli
  • Busch, Richard
  • Tielemann, Christopher
  • Fleck, Mirjam
  • Gnecco, Enrico
  • Müller, Ralf
  • Casado, Santiago
  • Berthold, Lutz
  • Hurle, Katrin
  • Boccaccini, Ar
  • Pablos-Martín, Araceli De
  • Silva, Juliana Martins De Souza E.
  • Sitarz, Maciej
  • Nawaz, Qaisar
  • Selle, Susanne
  • Juliana Martins, Souza E. Silva
  • Pablos Martín, Araceli
  • Juliana Martins, De Souza E. Silva
  • De Pablosmartín, Araceli
  • Pablosmartín, Araceli De
  • Boccaccini, Aldo R.
  • Blochberger, M.
  • Hupa, Leena
  • Scheffler, F.
  • Wetzel, R.
  • Uesbeck, Tobias
  • Cicconi, Maria Rita
  • Lu, Zhuorui
  • Schuhladen, Katharina
  • Khattech, Ismail
  • Bechrifa, Ali
  • Elabidine, Mohamed Zine
  • Cherbib, Mohamed Atef
  • Mandlule, Armando
  • Döhler, Franziska
  • Friedrich, Manfred
  • Brückner, Raika
  • Tylkowski, Maxi
  • Jones, Julian R.
  • Greenspan, David C.
  • Blochberger, Max
OrganizationsLocationPeople

article

Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume

  • Brückner, Raika
  • Brauer, Delia S.
  • Hupa, Leena
  • Tylkowski, Maxi
Abstract

Partially substituting one alkali oxide for another reduces thecrystallisation tendency and improves the processing of bioactiveglasses. Here, we investigate how we can use alkali ions of varyingionic radii to control glass degradation and ion release from Bioglass45S5. Partially replacing sodium by lithium reduced ion release instatic and dynamic dissolution studies in Tris buffer, while ion releaseincreased with increasing potassium for sodium substitution. While themixed alkali effect is known to reduce ion release from conventionalsilicate glasses (compared to compositions containing one alkali oxideonly), in the glasses studied here ion release was controlled by thepacking of the silicate network, described by glass molar volume andoxygen density. Incorporating an alkali ion of smaller ionic radius (Lifor Na or Na for K) resulted in a more compact network of higher oxygendensity, which reduced ion release. On the other hand, an alkali ion oflarger ionic radius (K for Na or Na for Li) expanded the silicatenetwork, allowing for faster ion release. This can be explained by watermolecules penetrating an expanded silicate network more easily than amore compact one, thereby directly influencing the ion exchange betweenmodifier ions and protons from the dissolution medium. This shows thatthe use of modifier ions of varying ionic radii allows for tailoringbioactive glass ion release and degradation while maintaining silicatenetwork polymerisation and network connectivity. And, indeed, recentliterature suggests that this concept can be extended to other modifiersbesides alkali metal ions, making it possible to design bioactiveglasses of tailored solubility.

Topics
  • density
  • impedance spectroscopy
  • glass
  • glass
  • Sodium
  • Potassium
  • Lithium
  • molar volume