People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gann, Eliot
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Reassessing the Significance of Reduced Aggregation and Crystallinity of Naphthalene Diimide-Based Copolymer Acceptors in All-Polymer Solar Cellscitations
- 2019Residual solvent additive enables the nanostructuring of PTB7-Th:PC71BM solar cells via soft lithographycitations
- 2018Tuning the Molecular Weight of the Electron Accepting Polymer in All-Polymer Solar Cellscitations
- 2018Nature and Extent of Solution Aggregation Determines the Performance of P(NDI2OD-T2) Thin-Film Transistorscitations
- 2018Impact of Acceptor Fluorination on the Performance of All-Polymer Solar Cellscitations
- 2018Thionation of naphthalene diimide moleculescitations
- 2018Blade Coating Aligned, High-Performance, Semiconducting-Polymer Transistorscitations
- 2018Design of New Isoindigo-Based Copolymer for Ambipolar Organic Field-Effect Transistorscitations
- 2017Understanding charge transport in lead iodide perovskite thin-film field-effect transistorscitations
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole‐based polymer solar cellscitations
- 2017Unconventional Molecular Weight Dependence of Charge Transport in the High Mobility n-type Semiconducting Polymer P(NDI2OD-T2)citations
- 2017Critical Role of Pendant Group Substitution on the Performance of Efficient All-Polymer Solar Cellscitations
- 2017Influence of fluorination on the microstructure and performance of diketopyrrolopyrrole-based polymer solar cellscitations
- 2017Influence of Fullerene Acceptor on the Performance, Microstructure, and Photophysics of Low Bandgap Polymer Solar Cellscitations
- 2017Isolating and quantifying the impact of domain purity on the performance of bulk heterojunction solar cellscitations
- 2016Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cellscitations
- 2016Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cellscitations
- 2016Coulomb Enhanced Charge Transport in Semicrystalline Polymer Semiconductorscitations
- 2016Vinylene-Linked Oligothiophene-Difluorobenzothiadiazole Copolymer for Transistor Applicationscitations
- 2016EDOT-diketopyrrolopyrrole copolymers for polymer solar cellscitations
- 2016Azido-Functionalized Thiophene as a Versatile Building Block to Cross-Link Low-Bandgap Polymerscitations
- 2015Increased exciton dipole moment translates into charge-transfer excitons in thiophene-fluorinated low-bandgap polymers for organic photovoltaic applicationscitations
Places of action
Organizations | Location | People |
---|
article
EDOT-diketopyrrolopyrrole copolymers for polymer solar cells
Abstract
<p>The photovoltaic properties of a series of diketopyrrolo[3,4-c]pyrrole (DPP) copolymers containing 3,4-ethylenedioxythiophene (EDOT) as a comonomer are reported. With use of different aryl flanking units on the DPP core, namely thiophene, pyridine or phenyl, optical gaps ranging from 1.91 eV to 1.13 eV are achieved. When blended with the fullerene derivative [6,6]-phenyl C<sub>71</sub>-butyric acid methyl ester (PC<sub>71</sub>BM), the thiophene-flanked copolymer PDPP[T]<sub>2</sub>-EDOT with an optical gap of 1.13 eV was found to have the best photovoltaic performance, with an efficiency of 2.5% in an inverted device architecture. Despite having the lowest open circuit voltage of the three polymers studied, PDPP[T]<sub>2</sub>-EDOT-based devices were able to achieve superior efficiencies due to the high short circuit current of up to ∼15 mA cm<sup>-2</sup>. PDPP[T]<sub>2</sub>-EDOT-based devices also exhibit higher external quantum efficiencies which are associated with a superior microstructure-as revealed by transmission electron microscopy (TEM) and grazing incidence wide-angle X-ray scattering (GIWAXS)-which is associated with the enhanced aggregation tendency of PDPP[T]<sub>2</sub>-EDOT chains. In particular PDPP[T]<sub>2</sub>-EDOT:PC<sub>71</sub>BM blends were found to have a finer phase separated morphology with superior thin-film crystallinity. Surface morphology was also investigated with atomic force microscopy and near-edge X-ray absorption fine-structure spectroscopy.</p>