People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Calero, Sofía
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024A simulation study of linker vacancy distribution and its effect on UiO-66 stabilitycitations
- 2024Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: Band gap tuning: Via iron substitutions
- 2024Temperature-Dependent Chirality in Halide Perovskitescitations
- 2024Adapted thermodynamical model for the prediction of adsorption in nanoporous materialscitations
- 2024Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditionscitations
- 2022Thermostructural Characterization of Silicon Carbide Nanocomposite Materials via Molecular Dynamics Simulationscitations
- 2022Understanding the stability and structural properties of ordered nanoporous metals towards their rational synthesiscitations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskites:Insights from Reactive Molecular Dynamics Simulations of CsPbI 3citations
- 2022What Happens at Surfaces and Grain Boundaries of Halide Perovskitescitations
- 2020Further Extending the Dilution Range of the “Solvent-in-DES” Regime upon the Replacement of Water by an Organic Solvent with Hydrogen Bond Capabilitiescitations
- 2020Efficient modelling of ion structure and dynamics in inorganic metal halide perovskitescitations
- 2019Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materialscitations
- 2018Electronic structure of porphyrin-based metal– organic frameworks and their suitability for solar fuel production photocatalysis
- 2018iRASPAcitations
- 2018Role of Ionic Liquid [EMIM]+[SCN]- in the Adsorption and Diffusion of Gases in Metal-Organic Frameworkscitations
- 2018Influence of Flexibility on the Separation of Chiral Isomers in STW-Type Zeolitecitations
- 2017Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework seriescitations
- 2017Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysiscitations
- 2016Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74citations
- 2016Storage and Separation of Carbon Dioxide and Methane in Hydrated Covalent Organic Frameworkscitations
- 2016RASPAcitations
- 2015Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysiscitations
- 2015Thermostructural behaviour of Ni-Cr materialscitations
- 2015Design and development of a controlled pressure/temperature set-up for in situ studies of solid-gas processes and reactions in a synchrotron X-ray powder diffraction stationcitations
- 2015Molecular dynamics simulations of organohalide perovskite precursorscitations
- 2015Insights into the microscopic behaviour of nanoconfined watercitations
- 2014Exploring new methods and materials for enantioselective separations and catalysiscitations
- 2014Effect of the confinement and presence of cations on hydrogen bonding of water in LTA-type zeolitecitations
- 2014Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterpartscitations
- 2010Analysis of the ITQ-12 zeolite performance in propane - Propylene separations using a combination of experiments and molecular simulationscitations
- 2010Effective Monte Carlo scheme for multicomponent gas adsorption and enantioselectivity in nanoporous materialscitations
- 2008Computing the heat of adsorption using molecular simulationscitations
- 2006Dynamically corrected transition state theory calculations of self-diffusion in anisotropic nanoporous materialscitations
- 2006Influence of cation Na/Ca ratio on adsorption in LTA 5Acitations
Places of action
Organizations | Location | People |
---|
article
Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis
Abstract
Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.