People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Connor, Paul Alexander
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2021Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxidescitations
- 2021Carrier extraction from metallic perovskite oxide nanoparticlescitations
- 2020High oxide ion and proton conductivity in a disordered hexagonal perovskitecitations
- 2019Nanostructured perovskite solar cells
- 2018Transition metal chlorides NiCl2, KNiCl3, Li6VCl8 and Li2MnCl4 as alternative cathode materials in primary Li thermal batteriescitations
- 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2017Synthesis and electrochemical study of CoNi2S4 as a novel cathode material in a primary Li thermal batterycitations
- 2016Zirconium trisulfide as a promising cathode material for Li primary thermal batteriescitations
- 2015Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuelscitations
- 2015Anodescitations
- 2014Development and performance of MgFeCrO4 – based electrodes for solid oxide fuel cellscitations
- 2013Development and performance of MgFeCrO4 – based electrodes for solid oxide fuel cellscitations
- 2013Remarkable transition from rocksalt/perovskite layered structure to fluorite/rocksalt layered structure in rapidly cooled Ln 2 CuO 4citations
- 2013Remarkable transition from rocksalt/perovskite layered structure to fluorite/rocksalt layered structure in rapidly cooled Ln2CuO4citations
- 2013Development and performance of MgFeCrO 4 – based electrodes for solid oxide fuel cellscitations
- 2007Structural chemistry and conductivity of solid solution YBa 1-x Sr x Co 2 O 5+δcitations
Places of action
Organizations | Location | People |
---|
article
Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels
Abstract
The authors would like to thank the EPSRC-DST India-UK Collaborative Research Initiative in Fuel Cells project EPI037016/1 “Advancing Biogas through Fuel Flexible SOFC” for funding this work. JI acknowledges the Royal Society for a Wolfson merit award. ; Solid oxide fuel cells (SOFCs) afford an opportunity for the direct electrochemical conversion of biogas with high efficiency; however, direct utilisation of biogas in nickel-based SOFCs is a challenge as it is subject to carbon deposition. A biogas composition representative of a real operating system of 36% CH4, 36% CO2, 20% H2O, 4% H2 and 4% CO used here was derived from an anode recirculation method. A BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BCZYYb) infiltrated Ni-YSZ anode was investigated for biogas conversion. The infiltration of BCZYYb significantly promoted the electrochemical reactions and the cells exhibited high power output at the operational temperatures of 850, 800 and 750 °C. At 800 °C, supplied with a 20 ml min−1 biogas, the cell with a BCZYYb-Ni-YSZ anode, generated 1.69 A cm−2 at 0.8 V with an optimal amount of 0.6 wt% BCZYYb, whereas only 0.65 A cm−2 was produced with a non-infiltrated Ni-YSZ in the same conditions. At 750 °C, a maximum power density of 1.43 W cm−2 was achieved on a cell with a BCZYYb-Ni-YSZ anode, a 3 μm dense YSZ film electrolyte, a Gd0.1Ce0.9O2 (GDC) buffer layer and a La0.6Sr0.4Co0.2Fe0.8O3–Gd0.1Ce0.9O2 (LSCF-GDC) composite cathode. The cell remained stable, while operating at 0.8 V for 50 hours with a current density of 1.25 A cm−2. A well-designed cell structure and selected components made it possible to obtain excellent performance at good fuel utilisation. The analysis of gases in open-circuit conditions or under various current loads suggested that the prevalent reaction was reforming of methane without coking. This study demonstrates that the BCZYYb-Ni-YSZ is a promising electrode for carbon-containing fuel. ; Peer reviewed