People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomez-Romero, Pedro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2018Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategiescitations
- 2018Energy harvesting from neutralization reactions with saline feedbackcitations
- 2018Hybrid graphene-polyoxometalates nanofluids as liquid electrodes for dual energy storage in novel flow cellscitations
- 2018Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storagecitations
- 2017Mimics of microstructures of Ni substituted Mn1-xNixCo2O4 for high energy density asymmetric capacitorscitations
- 2017Ultrahigh energy density supercapacitors through a double hybrid strategycitations
- 2017Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategycitations
- 2017Fundamentals of binary metal oxide-based supercapacitorscitations
- 2017Capacitive vs faradaic energy storage in a hybrid cell with LiFePO4/RGO positive electrode and nanocarbon negative electrodecitations
- 2016Aqueous synthesis of LiFePO4 with Fractal Granularitycitations
- 2016Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methodscitations
- 2015Asymmetric supercapacitors based on hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodescitations
- 2015An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitorscitations
- 2015Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steelcitations
- 2015A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolytecitations
Places of action
Organizations | Location | People |
---|
article
An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitors
Abstract
In this work, an innovative 3-D symmetric micro-supercapacitor based on polypyrrole (PPy) coated silicon nanotree (SiNTr) hybrid electrodes has been fabricated. First, SiNTrs were grown on silicon substrates by chemical vapor deposition (CVD) and then via an electrochemical method, the conducting polymer coating was deposited onto the surface of SiNTr electrodes. This study illustrates the excellent electrochemical performance of a hybrid micro-supercapacitor device using the synergistic combination of both PPy as the electroactive pseudo-capacitive material and branched SiNWs as the electric double layer capacitive material in the presence of an aprotic ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide; PYR<inf>13</inf>TFSI) as the electrolyte. The hybrid device exhibited a specific capacitance as high as ∼14 mF cm-2 and an energy density value of ∼15 mJ cm-2 at a wide cell voltage of 1.5 V using a high current density of 1 mA cm-2. Furthermore, a remarkable cycling stability after thousands of galvanostatic charge-discharge cycles with a loss of approximately 30% was obtained. The results reported in this investigation demonstrated that PPy coated SiNTr-based micro-supercapacitors exhibit the best performances among hybrid micro-supercapacitors made of silicon nanowire electrodes grown by CVD in terms of specific capacitance and energy density.