Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Robinson, B.

  • Google
  • 1
  • 4
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Wettability of hierarchically-textured ceramic coatings produced by suspension HVOF spraying37citations

Places of action

Chart of shared publication
Wang, S. C.
1 / 10 shared
Wood, Robert J. K.
1 / 93 shared
Zhang, F.
1 / 30 shared
Villiers-Loverlock, H.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Wang, S. C.
  • Wood, Robert J. K.
  • Zhang, F.
  • Villiers-Loverlock, H.
OrganizationsLocationPeople

article

Wettability of hierarchically-textured ceramic coatings produced by suspension HVOF spraying

  • Wang, S. C.
  • Wood, Robert J. K.
  • Zhang, F.
  • Villiers-Loverlock, H.
  • Robinson, B.
Abstract

A novel but simple path for the preparation of superhydrophobic and superhydrophilic coatings has been demonstrated via a recently developed technology, namely Suspension High Velocity Oxy-Fuel spraying. Potential uses for robust superhydrophobic coatings include antifouling applications such as aeroplane wings, ship hulls, offshore wind turbine blades, or the above-deck structures on ice breaker vessels. Several fabrication techniques have been reported for preparing inorganic superhydrophobic surfaces, but existing coatings either lack the necessary robustness for engineering applications and/or their deposition methods are not suitable for industrial scale-up. In this work, the industrially established HVOF coating process was adapted to use a liquid suspension of commercially available nano-particles (Titania — TiO2, and hexagonal boron nitride — h-BN) as feedstock to produce nanostructured suspension HVOF TiO2/h-BN coatings for the first time on stainless steel. Results indicate that agglomerates in the nano-feedstock can be dispersed by h-BN due to poor mutual wettability between h-BN and molten TiO2. It also inhibits the anatase-to-rutile transformation of TiO2 during coating deposition by inhibiting sintering of TiO2 in the HVOF flame. The resultant coating becomes superhydrophobic when the addition of h-BN reaches 10 wt.% due to the presence of hierarchical nano-texture on the surface. The superhydrophobicity (contact angle of 163-170º) is maintained over a long period of time (>13 months, test still ongoing) and remains stable after exposure to light and tape test. A potential route for industrial preparation of robust water-repellent coatings is therefore highlighted by the study.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • stainless steel
  • nitride
  • texture
  • Boron
  • sintering