People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Słoma, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2022Electromagnetic field controlled domain wall displacement for induced strain tailoring in BaTiO3-epoxy nanocompositecitations
- 2021Additive manufacturing of electronics from silver nanopowders sintered on 3D printed low-temperature substratescitations
- 2021Carbon nanotube-based composite filaments for 3d printing of structural and conductive elementscitations
- 2020Conductive ABS/Ni Composite Filaments for Fused Deposition Modeling of Structural Electronicscitations
- 2020Flexible Gas Sensor Printed on a Polymer Substrate for Sub-ppm Acetone Detectioncitations
- 2019Mechanical and thermal properties of ABS/iron composite for fused deposition modelingcitations
- 2019Photonic curing of silver paths on 3D printed polymer substratecitations
- 2019Heterophase materials for fused filament fabrication of structural electronicscitations
- 2018Electrically conductive acrylonitrile butadiene styrene(ABS)/copper composite filament for fused deposition modelingcitations
- 2018Characterization of PMMA/BaTiO3 Composite Layers Through Printed Capacitor Structures for Microwave Frequency Applicationscitations
- 2016Microwave properties of sphere-, flake-, and disc-shaped BaFe<inf>12</inf>O<inf>19</inf> nanoparticle inks for high-frequency applications on printed electronicscitations
- 2016Rheology of inks for various techniques of printed electronicscitations
- 2015Perovskite-type KTaO 3–reduced graphene oxide hybrid with improved visible light photocatalytic activitycitations
- 2015Influence of electric field on separation and orientation of carbon nanotubes in spray coated layerscitations
- 2015Simple optical method for recognizing physical parameters of graphene nanoplatelets materials
- 2014Thick Film Polymer Composites with Graphene Nanoplatelets for Use in Printed Electronics citations
- 2014Optical measurements of selected properties of nanocomposite layers with graphene and carbon nanotubes fillerscitations
- 2013Miniaturized coupled-line directional coupler designed with the use of photoimageable Thick-Film technology
- 2012Screen printed polymer pastes with carbon nanotubes for printed electronics applications
- 2012SAC 305 solder paste with carbon nanotubes - Part I: Investigation of the influence of the carbon nanotubes on the SAC solder paste propertiescitations
- 2010Investigation of properties of the SAC solder paste with the silver nanoparticle and carbon nanotube additives and the nano solder jointscitations
Places of action
Organizations | Location | People |
---|
article
Perovskite-type KTaO 3–reduced graphene oxide hybrid with improved visible light photocatalytic activity
Abstract
Novel rGO–KTaO3 composites with various graphene content were successfully synthesized using a facile solvothermal method which allowed both the reduction of graphene oxide and loading of KTaO3 nanocubes on the graphene sheets. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) specific surface area, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) emission spectroscopy. The obtained rGO–KTaO3 composites showed greatly improved photocatalytic performance for degradation of phenol under visible light irradiation (λ > 420 nm) over pristine KTaO3 which could be related to the photosensitizer role of graphene in the rGO–KTaO3 composites as well as the formation of p–n heterojunctions between KTaO3 nanocubes and rGO sheets. The highest photocatalytic activity in phenol degradation reaction was observed for rGO–KTaO3 hybrid with 30 wt% graphene. The enhanced photoactivity of this composite could be attributed to the synergistic effect of several factors such as: small crystallite size, extended absorption range in the visible spectrum and intimate contact between graphene and KTaO3 cubes.