Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Herazo, Cristina Isabel Castro

  • Google
  • 15
  • 51
  • 323

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023Isolation of cellulose microfibers and nanofibers by mechanical fibrillation in a water-free solvent13citations
  • 2023The Evolution and Future Trends of Unsaturated Polyester Biocomposites8citations
  • 2021Phase distribution changes of neat unsaturated polyester resin and their effects on both thermal stability and dynamic-mechanical properties9citations
  • 2019Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine47citations
  • 2017Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks72citations
  • 2017Influence of tribological test on the global conversion of natural composites2citations
  • 2017Effect of molecular weight reduction by60Co irradiation and polymer concentration in chitosan coating surface properties in relation to the surface properties of red tilapia (oreochromis spp.)citations
  • 2015Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking27citations
  • 2014Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarps39citations
  • 2014In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria65citations
  • 2014Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentation28citations
  • 2013Bacterial cellulose nanocomposites developed by in-situ fermentationcitations
  • 2012Biodegradability of Banana and Plantain Cellulose Microfibrils Films in Anaerobic Conditions5citations
  • 2012Surface free energy of films of alkali-treated cellulose microfibrils from banana rachis8citations
  • 2007Determinación de condiciones óptimas para el tratamiento alcalino de fibras de fique empleadas como reforzantes de materiales compuestoscitations

Places of action

Chart of shared publication
Pereira, M.
1 / 20 shared
Osorio Delgado, Marlon Andrés
4 / 4 shared
Rojo, Piedad Felisinda Gañán
15 / 34 shared
Hernández-Becerra, E.
1 / 1 shared
Marín, D.
1 / 1 shared
Builes, D.
1 / 1 shared
Tercjak, Agnieszka
2 / 11 shared
Builes, Daniel H.
2 / 3 shared
Zuluaga, Robin
12 / 18 shared
Marín, Daniel
2 / 3 shared
Barajas, Jaime
1 / 1 shared
Fernández-Morales, Patricia
1 / 3 shared
Kerguelen, Herbert
1 / 2 shared
Ortiz, Isabel
1 / 1 shared
Molina-Ramírez, Carlos
1 / 1 shared
Betancourt, Santiago
1 / 3 shared
Correa, Carlos Eduardo
1 / 3 shared
Vázquez, Analía
1 / 4 shared
Rapado, Manuel
1 / 1 shared
Paz, Nilia De La
1 / 1 shared
Fernández, Mirna
1 / 1 shared
Casariego, Alicia
1 / 1 shared
García, Mario A.
1 / 1 shared
Rojas, O. J.
1 / 3 shared
Filpponen, I.
1 / 2 shared
Betancourt, S.
1 / 2 shared
Orelma, H.
1 / 2 shared
Londoño, M.
1 / 2 shared
Andrade, R.
1 / 5 shared
Skurtys, O.
1 / 1 shared
Osorio, F.
1 / 1 shared
Filpponen, Ilari
1 / 5 shared
Kortaberria, Galder
1 / 13 shared
Caro, Gloria
1 / 1 shared
Vesterinen, Arja
1 / 1 shared
Rojas, Orlando J.
1 / 51 shared
Velásquez-Cock, Jorge A.
1 / 1 shared
Restrepo, David
1 / 3 shared
Marin, Diana
1 / 1 shared
Montoya, Ursula
1 / 1 shared
Rojas, Orlando
1 / 5 shared
Restrepo, D.
1 / 1 shared
Montoya, U.
1 / 1 shared
Retegi, Aloña
1 / 1 shared
Vélez Acosta, Lina María
1 / 1 shared
Mondragon, Iñaki
2 / 9 shared
Putaux, Jean Luc
1 / 2 shared
Gomez Hoyos, Catalina
1 / 5 shared
Palencia, Ana
1 / 1 shared
Gutiérrez, Iván
1 / 1 shared
Vargas, Gustavo
1 / 1 shared
Chart of publication period
2023
2021
2019
2017
2015
2014
2013
2012
2007

Co-Authors (by relevance)

  • Pereira, M.
  • Osorio Delgado, Marlon Andrés
  • Rojo, Piedad Felisinda Gañán
  • Hernández-Becerra, E.
  • Marín, D.
  • Builes, D.
  • Tercjak, Agnieszka
  • Builes, Daniel H.
  • Zuluaga, Robin
  • Marín, Daniel
  • Barajas, Jaime
  • Fernández-Morales, Patricia
  • Kerguelen, Herbert
  • Ortiz, Isabel
  • Molina-Ramírez, Carlos
  • Betancourt, Santiago
  • Correa, Carlos Eduardo
  • Vázquez, Analía
  • Rapado, Manuel
  • Paz, Nilia De La
  • Fernández, Mirna
  • Casariego, Alicia
  • García, Mario A.
  • Rojas, O. J.
  • Filpponen, I.
  • Betancourt, S.
  • Orelma, H.
  • Londoño, M.
  • Andrade, R.
  • Skurtys, O.
  • Osorio, F.
  • Filpponen, Ilari
  • Kortaberria, Galder
  • Caro, Gloria
  • Vesterinen, Arja
  • Rojas, Orlando J.
  • Velásquez-Cock, Jorge A.
  • Restrepo, David
  • Marin, Diana
  • Montoya, Ursula
  • Rojas, Orlando
  • Restrepo, D.
  • Montoya, U.
  • Retegi, Aloña
  • Vélez Acosta, Lina María
  • Mondragon, Iñaki
  • Putaux, Jean Luc
  • Gomez Hoyos, Catalina
  • Palencia, Ana
  • Gutiérrez, Iván
  • Vargas, Gustavo
OrganizationsLocationPeople

article

Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking

  • Rojas, O. J.
  • Zuluaga, Robin
  • Filpponen, I.
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Betancourt, S.
  • Orelma, H.
  • Londoño, M.
Abstract

<p>Bacterial cellulose (BC) grown from a culture medium in the presence of water-soluble poly(vinyl alcohol) (PVA) produced an assemblage that was used as precursor for the synthesis of biocompatible nanocomposites. Physical crosslinking via cyclic freezing and thawing of the formed hydrogel facilitated retention of PVA matrix upon composite separation and purification. The composites displayed a porous architecture within the PVA matrix and an excellent compressive strength as a result of the synergism between BC and PVA. BC largely improved the thermo-mechanical performance as well as moisture and dimensional stability of the systems while PVA imparted optical transparency and extensibility. Compared to the respective reference sample (BC-free material), elastic modulus increments of 40, 98 and 510% were measured for PVA-based nanocomposites loaded with BC at 10, 20 and 30% levels, respectively. Likewise, the corresponding strength at break were 30, 77 and 104% higher. The results indicate an exceptional reinforcing effect endowed by the three-dimensional network structure that was formed in situ upon BC biosynthesis in the presence of PVA and also suggest a large percolation within the matrix. BC is relatively inexpensive, can produce scaffolds of given shapes and with high strength and acts as an excellent reinforcing element that promotes cell proliferation. Taken these properties together, BC and BC/PVA composites are promising materials in biomedical engineering.</p>

Topics
  • porous
  • nanocomposite
  • impedance spectroscopy
  • strength
  • cellulose
  • alcohol
  • percolated