Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monteiro, Michael

  • Google
  • 2
  • 9
  • 262

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Pd-complex driven formation of single-chain nanoparticles94citations
  • 2013An influenza virus-inspired polymer system for the timed release of siRNA168citations

Places of action

Chart of shared publication
Trouillet, Vanessa
1 / 29 shared
Roesky, Peter
1 / 3 shared
Willenbacher, Johannes
1 / 2 shared
Knoefel, Nicolai
1 / 1 shared
Altintas, Ozcan
1 / 9 shared
Truong, Nghia
1 / 3 shared
Crawford, Ross
1 / 4 shared
Jia, Zhongfan
1 / 2 shared
Gu, Wenyi
1 / 1 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Trouillet, Vanessa
  • Roesky, Peter
  • Willenbacher, Johannes
  • Knoefel, Nicolai
  • Altintas, Ozcan
  • Truong, Nghia
  • Crawford, Ross
  • Jia, Zhongfan
  • Gu, Wenyi
OrganizationsLocationPeople

article

Pd-complex driven formation of single-chain nanoparticles

  • Trouillet, Vanessa
  • Roesky, Peter
  • Willenbacher, Johannes
  • Knoefel, Nicolai
  • Altintas, Ozcan
  • Monteiro, Michael
Abstract

We report the facile synthesis of well-defined palladium(ii) cross-linked single-chain nanoparticles (Pd-SCNPs) using the 'repeating unit approach'. The linear precursor polymer (M<inf>n</inf> ≈ 10200 g mol-1, ≈ 1.17) was synthesized via nitroxide mediated statistical copolymerization of styrene and 4-(chloromethyl)styrene (CMS) followed by a post-polymerization modification of the resulting copolymer to covalently attach the triarylphosphine ligand moieties. The ligand content along the lateral polymer chain was 12%. Intramolecular crosslinking was performed in diluted solution with a suitable precursor complex (Pd[1,5-cyclooctadiene]Cl<inf>2</inf>) to afford the well-defined Pd-SCNPs, which feature a hydrodynamic diameter of D<inf>h</inf> = 5.4 nm. The palladium(ii) containing single-chain nanoparticles were characterized in-depth using 1H NMR spectroscopy, 31P{1H} NMR spectroscopy, dynamic light scattering (DLS), size exclusion chromatography (SEC), 1H spin-spin relaxation time (T<inf>2</inf>) analysis, X-ray photoelectron spectroscopy (XPS), and log-normal distribution (LND) simulations. Finally, the applicability of the Pd-SCNPs as catalyst in the Sonogashira coupling was exemplified. © The Royal Society of Chemistry 2015.

Topics
  • nanoparticle
  • x-ray photoelectron spectroscopy
  • simulation
  • copolymer
  • size-exclusion chromatography
  • Nuclear Magnetic Resonance spectroscopy
  • dynamic light scattering
  • palladium
  • post-polymerization modification