People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Florea, Ileana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Electrochemical and Spectro-Microscopic Analyses of Charge Accumulation and Ion Migration in Dry Processed Perovskite Solar Cells under Electrical Biasing
- 2024Two-step ALD process for non-oxide ceramic deposition: the example of boron nitridecitations
- 2024Two-step ALD process for non-oxide ceramic deposition : the example of boron nitride
- 2023Liquid Shear Exfoliation of MoS2: Preparation, Characterization, and NO2-Sensing Propertiescitations
- 2022Wafer-scale pulsed laser deposition of ITO for solar cellscitations
- 2022Wafer-scale pulsed laser deposition of ITO for solar cells: reduced damage vs. interfacial resistancecitations
- 2022Wafer-scale pulsed laser deposition of ITO for solar cells: Reduced damage vs. interfacial resistancecitations
- 2022Thermal Evolution of C–Fe–Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stagecitations
- 2021Versatile template-directed synthesis of gold nanocages with a predefined number of windowscitations
- 2019Kinked silicon nanowires: Superstructures by metal assisted chemical etchingcitations
- 2019Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etchingcitations
- 2019Tuning bimetallic catalysts for a selective growth of SWCNTscitations
- 2018Oxidation-based continuous laser writing in vertical nano-crystalline graphite thin films
- 2018Diameter controlled growth of SWCNTs using Ru as catalyst precursors coupled with atomic hydrogen treatmentcitations
- 2018Tuning bimetallic catalysts for a selective growth of SWCNTs
- 2017In-situ preparation of ultra-small Pt nanoparticles within rod-shaped mesoporous silica particles: 3-D tomography and catalytic oxidation of n-hexanecitations
- 2016Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Filmscitations
- 2016The core contribution of transmission electron microscopy to functional nanomaterials engineeringcitations
- 2016The core contribution of transmission electron microscopy to functional nanomaterials engineeringcitations
- 2016Surface plasmon resonance of an individual nano-object on an absorbing substrate : quantitative effects of distance and 3D orientationcitations
- 2016Surface plasmon resonance of an individual nano-object on an absorbing substrate : quantitative effects of distance and 3D orientationcitations
- 2015Low Oxidation State and Enhanced Magnetic Properties Induced by Raspberry Shaped Nanostructures of Iron Oxidecitations
- 2013Towards nanoscaled gold phosphides: surface passivation and growth of composite nanostructurescitations
- 2013Towards nanoscaled gold phosphides: surface passivation and growth of composite nanostructurescitations
- 2013Carbon nanotube channels selectively filled with monodispersed Fe3-xO4 nanoparticlescitations
- 2013Large-Scale Simultaneous Orientation of CdSe Nanorods and Regioregular Poly(3-hexylthiophene) by Mechanical Rubbingcitations
Places of action
Organizations | Location | People |
---|
article
The core contribution of transmission electron microscopy to functional nanomaterials engineering
Abstract
Research on nanomaterials and nanostructured materials is burgeoning because their numerous and versatile applications contribute to solve societal needs in the domain of medicine, energy, environment and STICs. Optimizing their properties requires in-depth analysis of their structural, morphological and chemical features at the nanoscale. In a transmission electron microscope (TEM), combining tomography with electron energy loss spectroscopy and high-magnification imaging in high-angle annular dark-field mode provides access to all features of the same object. Today, TEM experiments in three dimensions are paramount to solve tough structural problems associated with nanoscale matter. This approach allowed a thorough morphological description of silica fibers. Moreover, quantitative analysis of the mesoporous network of binary metal oxide prepared by template-assisted spray-drying was performed, and the homogeneity of amino functionalized metal-organic frameworks was assessed. Besides, the morphology and internal structure of metal phosphide nanoparticles was deciphered, providing a milestone for understanding phase segregation at the nanoscale. By extrapolating to larger classes of materials, from soft matter to hard metals and/or ceramics, this approach allows probing small volumes and uncovering materials characteristics and properties at two or three dimensions. Altogether, this feature article aims at providing (nano) materials scientists with a representative set of examples that illustrates the capabilities of modern TEM and tomography, which can be transposed to their own research.