Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gaponik, Nikolai P.

  • Google
  • 6
  • 34
  • 548

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Mechanosynthesis of polymer-stabilized lead bromide perovskites: Insight into the formation and phase conversion of nanoparticles8citations
  • 20165-(2-Mercaptoethyl)-1H-tetrazole11citations
  • 20153D assembly of silica encapsulated semiconductor nanocrystals12citations
  • 2014Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles152citations
  • 2013Mixed aerogels from Au and CdTe nanoparticles62citations
  • 2009Hydrogels and aerogels from noble metal nanoparticles303citations

Places of action

Chart of shared publication
Hubner, Rene
1 / 2 shared
Wei, Wei
1 / 7 shared
Erdem, Onur
1 / 3 shared
Wang, Jin
1 / 4 shared
Fan, Xuelin
1 / 1 shared
Demir, Hilmi Volkan
1 / 7 shared
Georgi, Maximilian
1 / 4 shared
Jiang, Guocan
1 / 3 shared
Eychmüller, Alexander
5 / 31 shared
Kaskel, Stefan
5 / 52 shared
Voitekhovich, Sergei V.
2 / 2 shared
Adam, Marion
1 / 1 shared
Ivashkevich, Ludmila S.
1 / 1 shared
Wolf, André
2 / 3 shared
Lyakhov, Alexander S.
1 / 1 shared
Guhrenz, Chris
1 / 1 shared
Rengers, Christin
1 / 2 shared
Adam, Marion Alexandra
1 / 1 shared
Kittler, Susann
1 / 1 shared
Herrmann, Anne Kristin
3 / 3 shared
Borchardt, Lars
2 / 10 shared
Formanek, Petr
1 / 10 shared
Eckert, Jürgen
1 / 1035 shared
Klose, Markus
1 / 5 shared
Giebeler, Lars
1 / 23 shared
Bigall, Nadja C.
2 / 26 shared
Lesnyak, Vladimir
1 / 9 shared
Hendel, Thomas
1 / 2 shared
Kühn, Laura
1 / 5 shared
Carrillo-Cabrera, Wilder
1 / 9 shared
Rose, Marcus
1 / 1 shared
Simon, Paul
1 / 15 shared
Vogel, Maria
1 / 2 shared
Dorfs, Dirk
1 / 13 shared
Chart of publication period
2021
2016
2015
2014
2013
2009

Co-Authors (by relevance)

  • Hubner, Rene
  • Wei, Wei
  • Erdem, Onur
  • Wang, Jin
  • Fan, Xuelin
  • Demir, Hilmi Volkan
  • Georgi, Maximilian
  • Jiang, Guocan
  • Eychmüller, Alexander
  • Kaskel, Stefan
  • Voitekhovich, Sergei V.
  • Adam, Marion
  • Ivashkevich, Ludmila S.
  • Wolf, André
  • Lyakhov, Alexander S.
  • Guhrenz, Chris
  • Rengers, Christin
  • Adam, Marion Alexandra
  • Kittler, Susann
  • Herrmann, Anne Kristin
  • Borchardt, Lars
  • Formanek, Petr
  • Eckert, Jürgen
  • Klose, Markus
  • Giebeler, Lars
  • Bigall, Nadja C.
  • Lesnyak, Vladimir
  • Hendel, Thomas
  • Kühn, Laura
  • Carrillo-Cabrera, Wilder
  • Rose, Marcus
  • Simon, Paul
  • Vogel, Maria
  • Dorfs, Dirk
OrganizationsLocationPeople

article

3D assembly of silica encapsulated semiconductor nanocrystals

  • Eychmüller, Alexander
  • Kaskel, Stefan
  • Voitekhovich, Sergei V.
  • Wolf, André
  • Rengers, Christin
  • Adam, Marion Alexandra
  • Gaponik, Nikolai P.
  • Kittler, Susann
Abstract

S.12713-12721 ; Non-ordered porous networks, so-called aerogels, can be achieved by the 3D assembly of quantum dots (QDs). These materials are well suited for photonic applications, however a certain quenching of the photoluminescence (PL) intensity is observed in these structures. This PL quenching is mainly attributed to the energy transfer mechanisms that result from the close contact of the nanoparticles in the network. Here, we demonstrate the formation of a novel aerogel material with non-quenching PL behaviour by non-classical, reversible gel formation from tetrazole capped silica encapsulated QDs. Monitoring of the gelation/degelation by optical spectroscopy showed that the optical properties of the nanocrystals could be preserved in the 3D network since no spectral shifts and lifetime shortening, which can be attributed to the coupling between QDs, are observed in the gels as compared to the original colloidal solutions. In comparison with other QD-silica monoliths, QDs in our gels are homogeneously distributed with a distinct and controllable distance. In addition we show that the silica shell is porous and allows metal ions to pass through the shell and interact with the QD core causing detectable changes of the emission properties. We further show the applicability of this gelation method to other QD materials which sets the stage for facile preparation of a variety of mixed gel structures. ; 7 ; Nr.29

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • photoluminescence
  • semiconductor
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • quantum dot
  • quenching
  • gelation