Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Randles, Michael D.

  • Google
  • 3
  • 15
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2016Mixed-metal cluster chemistry. 37. Syntheses, structural, spectroscopic, electrochemical, and optical power limiting studies of tetranuclear molybdenum-iridium clusters Dedicated to Professor Jack Lewis, a cluster chemist par excellence.4citations
  • 2015Syntheses, Electrochemical, Linear Optical, and Cubic Nonlinear Optical Properties of Ruthenium-Alkynyl-Functionalized Oligo(phenylenevinylene) Stars7citations
  • 2015Phosphine, isocyanide, and alkyne reactivity at pentanuclear molybdenum/tungsten-iridium clusters4citations

Places of action

Chart of shared publication
Simpson, Peter V.
2 / 4 shared
Cifuentes, Marie P.
3 / 6 shared
Schwich, Torsten
2 / 2 shared
Barlow, Adam
2 / 5 shared
Moxey, Graeme J.
3 / 4 shared
Fu, Junhong
2 / 2 shared
Smith, Matthew K.
1 / 2 shared
Samoc, Marek
1 / 6 shared
Yang, Xinwei
1 / 1 shared
Zhang, Chi
1 / 16 shared
Dalton, Gulliver T.
1 / 1 shared
Jeffery, Christopher J.
1 / 1 shared
Babgi, Bandar A.
1 / 2 shared
Chen, Zhiwei
1 / 1 shared
Gupta, Vivek
1 / 5 shared
Chart of publication period
2016
2015

Co-Authors (by relevance)

  • Simpson, Peter V.
  • Cifuentes, Marie P.
  • Schwich, Torsten
  • Barlow, Adam
  • Moxey, Graeme J.
  • Fu, Junhong
  • Smith, Matthew K.
  • Samoc, Marek
  • Yang, Xinwei
  • Zhang, Chi
  • Dalton, Gulliver T.
  • Jeffery, Christopher J.
  • Babgi, Bandar A.
  • Chen, Zhiwei
  • Gupta, Vivek
OrganizationsLocationPeople

article

Phosphine, isocyanide, and alkyne reactivity at pentanuclear molybdenum/tungsten-iridium clusters

  • Simpson, Peter V.
  • Cifuentes, Marie P.
  • Schwich, Torsten
  • Gupta, Vivek
  • Randles, Michael D.
  • Moxey, Graeme J.
  • Fu, Junhong
Abstract

<p>The trigonal bipyramidal clusters M<sub>2</sub>Ir<sub>3</sub>(μ-CO)<sub>3</sub>(CO)<sub>6</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>R) (M = Mo, R = Me 1a, R = H; M = W, R = Me, H) reacted with isocyanides to give ligand substitution products M<sub>2</sub>Ir<sub>3</sub>(μ-CO)<sub>3</sub>(CO)<sub>5</sub>(CNR′)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>R) (M = Mo, R = Me, R′ = C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6 3a; M = Mo, R = Me, R′ = <sup>t</sup>Bu 3b), in which core geometry and metal atom locations are maintained, whereas reactions with PPh<sub>3</sub> afforded M<sub>2</sub>Ir<sub>3</sub>(μ-CO)<sub>4</sub>(CO)<sub>4</sub>(PPh<sub>3</sub>)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>4</sub>R) (M = Mo, R = Me 4a, H 4c; M = W, R = Me 4b, H), with retention of core geometry but with effective site-exchange of the precursors' apical Mo/W with an equatorial Ir. Similar treatment of trigonal bipyramidal MIr<sub>4</sub>(μ-CO)<sub>3</sub>(CO)<sub>7</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) (M = Mo 2a, W 2b) with PPh<sub>3</sub> afforded the mono-substitution products MIr<sub>4</sub>(μ-CO)<sub>3</sub>(CO)<sub>6</sub>(PPh<sub>3</sub>)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) (M = Mo 5a; M = W 5b), and further reaction of the molybdenum example 5a with excess PPh<sub>3</sub> afforded the bis-substituted cluster MoIr<sub>4</sub>(μ<sub>3</sub>-CO)<sub>2</sub>(μ-CO)<sub>2</sub>(CO)<sub>4</sub>(PPh<sub>3</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) (6). Reaction of 1a with diphenylacetylene proceeded with alkyne coordination and C≡C cleavage, affording Mo<sub>2</sub>Ir<sub>3</sub>(μ<sub>4</sub>-η<sup>2</sup>-PhC<sub>2</sub>Ph)(μ<sub>3</sub>-CPh)<sub>2</sub>(CO)<sub>4</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) (7a) together with an isomer. Reactions of 2a and 2b with PhC≡CR afforded MIr<sub>4</sub>(μ<sub>3</sub>-η<sup>2</sup>-PhC<sub>2</sub>R)(μ<sub>3</sub>-CO)<sub>2</sub>(CO)<sub>6</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) (M = Mo, R = Ph 8a; M = W, R = Ph 8b, H; M = W, R = C<sub>6</sub>H<sub>4</sub>(C<sub>2</sub>Ph)-3 9a, C<sub>6</sub>H<sub>4</sub>(C<sub>2</sub>Ph)-4), while addition of 0.5 equivalents of the diynes 1,3-C<sub>6</sub>H<sub>4</sub>(C<sub>2</sub>Ph)<sub>2</sub> and 1,4-C<sub>6</sub>H<sub>4</sub>(C<sub>2</sub>Ph)<sub>2</sub> to WIr<sub>4</sub>(μ-CO)<sub>3</sub>(CO)<sub>7</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) gave the linked clusters [WIr<sub>4</sub>(CO)<sub>8</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)]<sub>2</sub>(μ<sub>6</sub>-η<sup>4</sup>-PhC<sub>2</sub>C<sub>6</sub>H<sub>4</sub>(C<sub>2</sub>Ph)-X) (X = 3, 4). The structures of 3a, 4a-4c, 5b, 6, 7a, 8a, 8b and 9a were determined by single-crystal X-ray diffraction studies, establishing the core isomerization of 4, the site selectivity for ligand substitution in 3-6, the alkyne C≡C dismutation in 7, and the site of alkyne coordination in 7-9. For clusters 3-6, ease of oxidation increases on increasing donor strength of ligand, increasing extent of ligand substitution, replacing Mo by W, and decreasing core Ir content, the Ir-rich clusters 5 and 6 being the most reversible. For clusters 7-9, ease of oxidation diminishes on replacing Mo by W, increasing the Ir content, and proceeding from mono-yne to diyne, although the latter two changes are small. In situ UV-vis-near-IR spectroelectrochemical studies of the (electrochemically reversible) reduction process of 8b were undertaken, the spectra becoming increasingly broad and featureless following reduction. The incorporation of isocyanides, phosphines, or alkyne residues in these pentanuclear clusters all result in an increased ease of oxidation and decreased ease of reduction, and thereby tune the electron richness of the clusters.</p>

Topics
  • cluster
  • molybdenum
  • x-ray diffraction
  • strength
  • tungsten
  • alkyne
  • Iridium