People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burrows, Andrew D.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Vanillin cross-linked chitosan film with controlled release of green tea polyphenols for active food packagingcitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2022Coupling Postsynthetic High-Temperature Oxidative Thermolysis and Thermal Rearrangements in Isoreticular Zinc MOFscitations
- 2021Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporositycitations
- 2019Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysiscitations
- 2018Polymer of intrinsic microporosity (PIM-7) coating affects triphasic palladium electrocatalysiscitations
- 2017Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applicationscitations
- 2017AFM imaging and nanoindentation of polymer of intrinsic microporosity PIM-1citations
- 2015Manufacturing of metal-organic framework monoliths and their application in CO 2 adsorptioncitations
- 2015PIM-MOF Composites for Use in Hybrid Hydrogen Storage Tanks
- 2015Manufacturing of metal-organic framework monoliths and their application in CO2 adsorptioncitations
- 2015The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acidcitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2008Subtle structural variation in copper metal-organic frameworks: Syntheses, structures, magnetic properties and catalytic behaviourcitations
- 2006Incorporation of dyes into hydrogen-bond networks: The structures and properties of guanidinium sulfonate derivatives containing ethyl orange and 4-aminoazobenzene-4 '-sulfonate
- 2003The influence of functional group orientation on the structure of zinc 1,1,4-trimethylthiosemicarbazide dicarboxylates: Probing the limits of crystal engineering strategies
Places of action
Organizations | Location | People |
---|
article
The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid
Abstract
The synthesis, structural and thermal characterisation of a number of coordination complexes featuring the N,O-heteroditopic ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate, HL are reported. The reaction of H 2 L with cobalt(II) and nickel(II) nitrates at room temperature in basic DMF/H 2 O solution gave discrete mononuclear coordination complexes with the general formula {[M(HL 2 (H 2 O) 4 ]·2DMF} (M = Co (1), Ni (2)), whereas the reaction with zinc(ii) nitrate gave [Zn(HL) 2 ] ∞ , 3, a coordination polymer with distorted diamondoid topology and fourfold interpenetration. Coordination about the tetrahedral Zn(II) nodes in 3 are furnished by two pyrazolyl nitrogen atoms and two carboxylate oxygen atoms to give a mixed N 2 O 2 donor set. Isotopological coordination polymers of zinc(II), {[Zn(HL) 2 ]·2CH 3 OH·H 2 O} ∞ , 4, and cobalt(II), [Co(HL) 2 ] ∞ , 5, are formed when the reactions are carried out under solvothermal conditions in methanol (80°C) and water (180°C), respectively. The reaction of H 2 L with cadmium(II) nitrate at room temperature in methanol gives {[Cd(HL) 2 (MeOH) 2 ]·1.8MeOH} ∞ 6, a 2-D (4,4)-connected coordination polymer, whereas with copper(II) the formation of green crystals that transform into purple crystals is observed. The metastable green phase [Cu 3 HL) 4 (μ 2 -SO 4 )(H 2 O 3 ] ∞ , 7, crystallises with conserved binding domains of the heteroditopic ligand and contains two different metal nodes: a dicopper carboxylate paddle wheel motif, and, a dicopper unit bridged by sulfate ions and coordinated by ligand pyrazolyl nitrogen atoms. The resultant purple phase {[Cu(HL) 2 ]·4CH 3 OH·H 2 O} ∞ , 8, however, has single copper ion nodes coordinated by mixed N 2 O 2 donor sets with trans-square planar geometry and is threefold interpenetrated. The desolvation of 8 was followed by powder X-ray diffraction and single crystal X-ray diffraction which show desolvation induces the transition to a more closely packed structure while the coordination geometry about the copper ions and the network ...