Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Jeongyong

  • Google
  • 1
  • 8
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition36citations

Places of action

Chart of shared publication
Bae, Si Young
1 / 1 shared
Jung, Byungoh
1 / 1 shared
Kim, Sangyun
1 / 1 shared
Deki, Manato
1 / 2 shared
Amano, Hiroshi
1 / 12 shared
Lekhal, Kaddour
1 / 6 shared
Lee, Dong-Seon
1 / 6 shared
Honda, Yoshio
1 / 9 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Bae, Si Young
  • Jung, Byungoh
  • Kim, Sangyun
  • Deki, Manato
  • Amano, Hiroshi
  • Lekhal, Kaddour
  • Lee, Dong-Seon
  • Honda, Yoshio
OrganizationsLocationPeople

article

Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition

  • Bae, Si Young
  • Jung, Byungoh
  • Lee, Jeongyong
  • Kim, Sangyun
  • Deki, Manato
  • Amano, Hiroshi
  • Lekhal, Kaddour
  • Lee, Dong-Seon
  • Honda, Yoshio
Abstract

To extend the availability of nanostructure-based optoelectronic applications, vertically elongated nanorods with precisely controlled morphology are required. For group III nitrides, pulsed-mode growth has recently been reported as an effective method for growing nanorod arrays with geometric precision. Here, we demonstrated the growth of arrays of highly elongated nanorods on Si substrates by metal-organic chemical vapor deposition using a pulsed-mode approach. Unlike the thick and high (or middle)-quality GaN templates normally used, nanorod growth was performed on an ultrathin and low-quality AlN/Si platform. Using kinetically controlled growth conditions and a patterning process, exceptionally long GaN nanorods were achieved with high geometric precision. The grown nanorods showed considerably improved optical and structural properties while remaining in uniform arrays. This approach can be used with a variety of materials to obtain nanorods with high quality, high uniformity, and high aspect ratio, and it can also serve as an effective fabrication method for InAlGaN-alloyed core/shell nanostructures for optoelectronic nanodevices with ultrahigh efficiency. © The Royal Society of Chemistry 2016.

Topics
  • morphology
  • nitride
  • chemical vapor deposition