People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alastalo, Ari
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2020Printed, Highly Stable Metal Oxide Thin-Film Transistors with Ultra-Thin High-κ Oxide Dielectriccitations
- 2018Systematic Design of Printable Metasurfacescitations
- 2018Systematic Design of Printable Metasurfaces: Validation Through Reverse-offset Printed Millimeter-wave Absorberscitations
- 2018Systematic Design of Printable Metasurfaces:Validation Through Reverse-offset Printed Millimeter-wave Absorberscitations
- 2016Towards printed millimeter-wave components:Material characterizationcitations
- 2016Towards printed millimeter-wave componentscitations
- 2016Towards printed millimeter-wave components: Material characterizationcitations
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2015Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronicscitations
- 2014Modelling of printable metal-oxide TFTs for circuit simulation
- 2013Roll-to-Roll manufacturing of printed OLEDscitations
- 2012Flexible bio-based pigment nanocellulose substrate for printed electronics
- 2012Water-based carbon-coated copper nanoparticle fluid:Formation of conductive layers at low temperature by spin coating and inkjet depositioncitations
- 2012Water-based carbon-coated copper nanoparticle fluidcitations
- 2011Synthesis of cobalt nanoparticles to enhance magnetic permeability of metal-polymer compositescitations
- 2010Substrate-facilitated nanoparticle sintering and component interconnection procedurecitations
- 2010Electrical Sintering of Conductor Grids for Optoelectronic Devices
- 2010A process for SOI resonators with surface micromachined covers and reduced electrostatic gapscitations
- 2010Printable WORM and FRAM memories and their applications
- 2008R2R Electrical Sintering of Nanoparticle Structures
- 2007Piezotransduced single-crystal silicon BAW resonatorscitations
Places of action
Organizations | Location | People |
---|
article
Gravure printed sol-gel derived AlOOH hybrid nanocomposite thin films for printed electronics
Abstract
<p>We report a sol-gel approach to fabricate aluminum oxyhydroxide (AlOOH)-based inks for the gravure printing of high-dielectric-constant nanocomposite films. By reacting 3-glycidoxypropyl-trimethoxysilane (GPTS) with aluminum oxyhydroxide (AlOOH) nanoparticles under constant bead milling, inks suitable for gravure printing were obtained. The calculated relative dielectric constants based on the measured capacitances and film thicknesses for the gravure-printed GPTS:AlOOH nanocomposites varied between 7 and 11 at a frequency of 10 kHz. The dielectric constant depended on the mixing ratio of the composite and was found to follow the Maxwell-Garnett ternary-system mixing rule, indicating the presence of micro/nanopores, which affect the electrical properties of the fabricated films. An increasing leakage current with increasing AlOOH content was observed. The high leakage current was reduced by printing two-layer films. The double-layered gravure-coated films exhibited a similar capacitance density, but a clearly lower leakage current and fewer electrical breakdowns compared to single-layered films with comparable film compositions and film thicknesses. The best composite yielded a capacitance density of 109 ± 2 pF mm<sup>-2</sup> at 10 kHz frequency and a leakage current density of 60 ± 20 μA cm<sup>-2</sup> at a 0.5 MV cm<sup>-1</sup> electric field as a single layer. The calculated relative dielectric constant at 10 kHz frequency for this composition was 11.2 ± 0.5.</p>