People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kordas, Krisztian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolutioncitations
- 2020Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunicationcitations
- 2020Flexible planar supercapacitors by straightforward filtration and laser processing stepscitations
- 2018Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopaminecitations
- 2018High photoresponse of individual WS 2 nanowire-nanoflake hybrid materialscitations
- 2018Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materialscitations
- 2018Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materialscitations
- 2016High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputteringcitations
- 2016Catalytic hydrogenation of D-xylose over Ru decorated carbon foam catalyst in a SpinChem® rotating bed reactorcitations
- 2015Trifluoroacetylazobenzene for optical and electrochemical detection of aminescitations
- 2014Titania nanofibers in gypsum compositescitations
Places of action
Organizations | Location | People |
---|
article
Trifluoroacetylazobenzene for optical and electrochemical detection of amines
Abstract
<p>In this work, we demonstrate the solution processing of optical and electrochemical dye sensors based on 4-(dioctylamino)-4′-(trifluoroacetyl)azobenzene and its application in sensing different amine compounds. Distinct optical response of the sensors exposed to ammonia, tetramethylammonium hydroxide, ethylamine, cadaverine and putrescine (typical compounds upon the decomposition of proteins) is observed. Incorporation of inkjet deposited thin films of the dye as sensors in food packages of ground meat and salmon is found as a feasible route to detect the appearance of biogenic amines produced by the degrading food products. Furthermore, we demonstrate an electrochemical amine sensor based on (trifluoroacetyl)azobenzene dye added in carbon nanotube-Nafion® composites. The electrochemical sensor exploits the reaction between the dye and amines to detect amines in electrolytes, while the carbon nanotubes provide large surface for adsorption and also provide a percolating electrical network for allowing efficient charge transfer at the electrode electrolyte interface. This journal is</p>