People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lindfors, Tom
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Shear exfoliated few-layer graphene and cellulose nanocrystal composite as biocompatible anode with efficient charge transfercitations
- 2020Electrochemical synthesis of 3D microstructured composite films of poly(3,4-ethylenedioxythiophene) and reduced nanographene oxidecitations
- 2020Fast high-shear exfoliation of natural flake graphite with temperature control and high yieldcitations
- 2019Reduced graphene oxide as water, carbon dioxide and oxygen barrier in plasticized poly(vinyl chloride) films
- 2017Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon (a-C:H) coatingcitations
- 2016Few-layer graphene and polyaniline composite as ion-to-electron transducer in silicone rubber solid-contact ion-selective electrodescitations
- 2015Application of composites of graphene derivatives and conducting polymers in solid-state electrochemical sensors
- 2014Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applicationscitations
- 2014Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxidecitations
- 2014Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Propertiescitations
- 2013Potential cycling stability of graphene and conducting polymer based composite materials for supercapacitor applications
- 2012Electropolymerization of Conducting Polymers in Graphene Oxide Solutions
- 2004The influence of lipophilic additives on the emeraldine base-emeraldine salt transition of polyanilinecitations
Places of action
Organizations | Location | People |
---|
article
Dispersible composites of exfoliated graphite and polyaniline with improved electrochemical behaviour for solid-state chemical sensor applications
Abstract
We report here the in situ polymerization of aniline in the presence of exfoliated graphite of two different grades (graphene and graphite) resulting in composite materials which are readily dispersible in N-methylpyrrolidone. Compared to polyaniline (PANI) prepared without graphene/graphite which becomes electrically non-conducting at pH > 3, the PANI-graphene/graphite composites showed significantly improved pH stability and electrochemical behaviour in aqueous electrolyte solutions at pH <= 8, without any further need of surface functionalization of the graphene/graphite flakes to stabilize the conducting form of polyaniline (PANI). The improved electroactivity is ascribed to the synergistic effect of graphene/graphite and PANI, and the network formation of the electrically conducting exfoliated graphites in the PANI matrix, which was electrochemically confirmed by simple cyclic voltammetric measurements at pH = 9.5 in the presence of the Ru(NH3)(6)(2+/3+) and Fe(CN)(6)(3-/4-) redox couples. Due to the dispersibility of the composites, thin films possessing stability in water can easily be prepared by solution casting for different types of solid-state chemical sensor and ion-selective electrode applications operating at neutral pH. By using sodium ascorbate as a model substance, we show that its amperometric detection at pH = 7.3 with the PANI-graphite films results in a current amplification of 1.3-10.2 times in the concentration range of 10(-4)-10(-2) M, compared to conventional PANI, which clearly demonstrates the advantage of incorporating exfoliated graphites in the PANI films. The materials reported in this paper were systematically characterized with cyclic voltammetry, FTIR, Raman and X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction and electrical conductivity measurements.