People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karagiannidis, Panagiotis
University of Sunderland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Magnetic-Responsive Triple Shape Memory Polymer from Bio-Based Benzoxazine/Urethane Polymer Alloys with Iron Oxide Nanoparticlescitations
- 2024Biocompatibility, thermal and mechanical properties of glass fiber‐reinforced polybenzoxazine composites as a potential new endodontic postcitations
- 2023New nanocomposites based on poly(benzoxazine-co-epoxy) matrix reinforced by novel graphene single and mixed blend fillerscitations
- 2023Mechanical properties and curing kinetics of bio-based benzoxazine–epoxy copolymer for dental fiber postcitations
- 2023Thermal Interface Materials with Hexagonal Boron Nitride and Graphene Fillers in PDMS Matrix: Thermal and Mechanical Propertiescitations
- 2022Development of a new birthing model material based on silicone rubber/ natural rubber blendcitations
- 2022Βio-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performancecitations
- 2022Bio-Based Epoxy/Amine Reinforced with Reduced Graphene Oxide (rGO) or GLYMO-rGO: Study of Curing Kinetics, Mechanical Properties, Lamination and Bonding Performancecitations
- 2020Development of new graphene/epoxy nanocomposites and study of cure kinetics, thermal and mechanical propertiescitations
- 2020Effect of sintering techniques on microstructural, mechanical and tribological properties of Al-SiC compositescitations
- 2020Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFCcitations
- 2020Effects of chemical structure and morphology of graphene-related materials (GRMs) on melt processing and properties of GRM/polyamide-6 nanocompositescitations
- 2020Development of Lightweight and High-Performance Ballistic Helmet Based on Poly(Benzoxazine-co-Urethane) Matrix Reinforced with Aramid Fabric and Multi-Walled Carbon Nanotubescitations
- 20193-Phase Hierarchical Graphene-based Epoxy Nanocomposite Laminates for Automotive Applicationscitations
- 2019Development of graphene-based materials from printing inks and coatings to structural composites
- 2017Production of graphene by solution processing and development of graphene-based materials
- 2014Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticlescitations
- 2014High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporationcitations
- 2013Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regenerationcitations
- 2012Novel nanostructured biomaterials: implications for coronary stent thrombosis.citations
- 2012Development of a nanoporous and multilayer drug-delivery platform for medical implantscitations
- 2009Physical Properties of a Hybrid and a Nanohybrid Dental Light-Cured Resin Compositecitations
Places of action
Organizations | Location | People |
---|
article
High performance transistors based on the controlled growth of triisopropylsilylethynyl-pentacene crystals via non-isotropic solvent evaporation
Abstract
Triisopropylsilylethynyl-pentacene (TIPS-PEN) has proven to be one of the most promising small molecules in the field of molecular electronics, due to its unique features in terms of stability, performance and ease of processing. Among a wide variety of well-established techniques for the deposition of TIPS-PEN, blade-metered methods have recently gained great interest towards the formation of uniform crystalline films over a large area. Following this rationale, we herein designed a versatile approach based on blade-coating, which overcomes the problem of anisotropic crystal formation by manipulating the solvent evaporation behaviour, in a way that brings about a preferential degree of crystal orientation. The applicability of this method was evaluated by fabricating field-effect transistors on glass as well as on silicon dioxide/silicon (SiO2/Si) substrates. Interestingly, in an attempt to improve the rheological and wetting behaviour of the liquid films on the SiO2/Si substrates, we introduced a polymeric interlayer of polystyrene (PS) or polymethylmethacrylate (PMMA) which concurrently acts as passivation and crystallization assisting layer. In this case, the synergistic effects of the highly-ordered crystalline structure and the oxide surface modification were thoroughly investigated. The overall performance of the fabricated devices revealed excellent electrical characteristics, with high saturation mobilities up to 0.72 cm2 V−1 s−1 (on glass with polymeric dielectric), on/off current ratio >104 and low threshold voltage values (<−5 V).