People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hadjichristidis, Nikos
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Interpenetrated and Bridged Nanocylinders from Self-Assembled Star Block Copolymerscitations
- 2024Controlled Ring‐Opening Polymerization of Methyl Glycolide with Bifunctional Organocatalystcitations
- 2023Poly(lactic acid) stereocomplexes based molecular architectures : synthesis and crystallization
- 2020Poly(vinylidene fluoride)-based Complex Macromolecular Architectures: From Synthesis to Properties and Applicationscitations
- 2019Generating Triple Crystalline Superstructures in Melt Miscible PEO-b-PCL-b-PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallizationcitations
- 2018CO 2 as versatile carbonation agent of glycosides: Synthesis of 5- and 6-membered cyclic glycocarbonates and investigation of their ring-openingcitations
- 2018Block Copolymers of Macrolactones/Small Lactones by a “Catalyst-Switch” Organocatalytic Strategy. Thermal Properties and Phase Behaviorcitations
- 2017A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esterscitations
- 2017Self-assembly of Polystyrene- b -poly(2-vinylpyridine)- b -poly(ethylene oxide) Triblock Terpolymerscitations
- 2017Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbasescitations
- 2016Metal-Free Alternating Copolymerization of CO2with Epoxides: Fulfilling “Green” Synthesis and Activitycitations
- 2016Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) 2 armscitations
- 2016Ring-opening polymerization of ω-pentadecalactone catalyzed by phosphazene superbasescitations
- 2015Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl etherscitations
- 2009Solid state nanofibers based on self-assemblies:from cleaving from self-assemblies to multilevel hierarchical constructscitations
Places of action
Organizations | Location | People |
---|
article
Triblock and pentablock terpolymers by sequential base-assisted living cationic copolymerization of functionalized vinyl ethers
Abstract
A series of novel, well-defined triblock (PnBVE-b-PCEVE-b-PSiDEGVE) and pentablock (PSiDEGVE-b-PCEVE-b-PnBVE-b-PCEVE-b-PSiDEGVE) terpolymers of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiEGVE) were synthesized by sequential base-assisted living cationic polymerization. The living character of the homopolymerization of the three VE monomers and the crossover reaction resulting in the formation of well-defined block copolymers were investigated in various solvents (toluene, dichloromethane and n-hexane) using either a monofunctional [nBVE-acetic acid adduct (nBEA), CEVE-acetic acid adduct (CEEA) and SiDEGVE-acetic acid adduct (SiDEGEA)] or a difunctional [1,4-cyclohexane-1,4-diyl bis(2-methoxyethyl acetate) (cHDMEA)] initiator. All initiators are structurally equivalent to the dormant species of the corresponding monomers in order to achieve fast initiation. The optimal conditions of polymerization were achieved in n-hexane at -20 °C, in the presence of 1 M AcOEt (base). Good control over the number average molecular weight (Mn) and the polydispersity index (PDI) was obtained only at [Et3Al2Cl3]0 = [Chain-end]0 ≤ 10 mM. 2,6-Di-tert-butylpyridine (DtBP) was used as a non-nucleophilic proton trap to suppress any protonic initiation from moisture (i.e., Et3Al2Cl3·H2O). Well-defined PnBVEn-b-PCEVEp-b-PSiDEGVEq and PSiDEGVEq-b-PCEVEp-b-PnBVEn-b-PCEVEp-b-PSiDEGVEq terpolymers with a high crossover efficiency, no PCEVE-induced physical gelation, and predictable Mn and PDI < 1.15 were synthesized successfully provided that the targeted DPCEVE/DPnBVE ratio (i.e., p/n) did not exceed 2 and 0.2, respectively. The quantitative desilylation of the PSiEGVE by n-Bu4N+F- in THF at 0 °C led to triblock and pentablock terpolymers in which the PCEVE is the central block and the polyalcohol is the outer block. The thermal properties of the synthesized materials were examined by differential scanning calorimetry. This journal is