People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Obrien, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Tunable structural, morphological and optical properties of undoped, Mn, Ni and Ag-doped CuInS2 thin films prepared by AACVDcitations
- 2021Synthesis, X-ray single-crystal structural characterization and thermal analysis of bis(O-alkylxanthato)Cd(II) and bis(O-alkylxanthato)Zn(II) complexes used as precursors for cadmium and zinc sulfide thin filmscitations
- 2021Structural investigations of α-MnS nanocrystals and thin films synthesised from manganese(II) xanthates by hot injection, solvent-less thermolysis and doctor blade routes.citations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Synthesis of Iron Sulfide Thin Films and Powders from New Xanthate Precursorscitations
- 2019Chemical vapor deposition of tin sulfide from diorganotin(IV) dixanthatescitations
- 2019A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materialscitations
- 2019Accessing γ-Ga2S3 by solventless thermolysis of gallium xanthates: A low temperature limit for crystalline products?citations
- 2018Synthesis of Nanostructured Powders and Thin Films of Iron Sulfide from Molecular Precursorscitations
- 2018The synthesis of a monodisperse quaternary ferrite (FeCoCrO4) from the hot injection thermolysis of the single source precursor [CrCoFeO(O2C: TBu)6(HO2CtBu)3]citations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
- 2017Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particlescitations
- 2017A Single Source Precursor for Tungsten Dichalcogenide Thin Films: Mo1-xWxS2 (0 ≤ x ≤ 1) Alloys by Aerosol-Assisted Chemical Vapor Deposition (AACVD)citations
- 2016Chemical Vapour Deposition of Rhenium Disulfide and Rhenium-Doped Molybdenum Disulfide Thin Films Using Single-Source Precursorscitations
- 2015Synthesis of Lateral Size-Controlled Monolayer 1H-MoS2@Oleylamine as Supercapacitor Electrodes.citations
- 2015In Situ Synthesis of PbS Nanocrystals in Polymer Thin Films from Lead(II) Xanthate and Dithiocarbamate Complexes: Evidence for Size and Morphology Controlcitations
- 2014A one-pot synthesis of monodispersed iron cobalt oxide and iron manganese oxide nanoparticles from bimetallic pivalate clusterscitations
- 2014Real-time imaging and elemental mapping of AgAu nanoparticle transformationscitations
- 2011Morphology-tailored synthesis of PbSe nanocrystals and thin films from bis[N,N-diisobutyl-N′-(4-nitrobenzoyl)selenoureato]lead(II)citations
- 2011Triggered aggregation of PbS nanocrystal dispersions; towards directing the morphology of hybrid polymer films using a removable bilinker ligandcitations
- 2011New routes to copper sulfide nanostructures and thin filmscitations
- 2010Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: Deposition, spectroscopic and computational studiescitations
- 2007Electronic properties of the interface between p-CuI and anatase-phase n-Ti O2 single crystal and nanoparticulate surfaces: A photoemission studycitations
Places of action
Organizations | Location | People |
---|
article
Real-time imaging and elemental mapping of AgAu nanoparticle transformations
Abstract
We report the controlled alloying, oxidation, and subsequent reduction of individual AgAu nanoparticles in the scanning transmission electron microscope (STEM). Through sequential application of electron beam induced oxidation and in situ heating and quenching, we demonstrate the transformation of Ag–Au core–shell nanoparticles into: AgAu alloyed, Au–Ag core–shell, hollow Au–Ag2O core–shell, and Au–Ag2O yolk-shell nanoparticles. We are able to directly image these morphological transformations in real-time at atomic resolution and perform energy dispersive X-ray (EDX) spectrum imaging to map changing elemental distributions with sub-nanometre resolution. By combining aberration corrected STEM imaging and high efficiency EDX spectroscopy we are able to quantify not only the growth and coalescence of Kirkendall voids during oxidation but also the compositional changes occurring during this reaction. This is the first time that it has been possible to track the changing distribution of elements in an individual nanoparticle undergoing oxidation driven shell growth and hollowing.<br/>