Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Antipina, Liubov Yu

  • Google
  • 2
  • 9
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Construction of polarized carbon-nickel catalytic surfaces for potent, durable, and economic hydrogen evolution reactions132citations
  • 2014Theoretical aspects of WS2 nanotube chemical unzipping6citations

Places of action

Chart of shared publication
Weng, Qunhong
1 / 1 shared
Zhou, Min
1 / 2 shared
Yang, Yijun
1 / 1 shared
Wang, Xi
1 / 4 shared
Bando, Yoshio
1 / 40 shared
Sorokin, Pavel
2 / 8 shared
Popov, Zakhar
1 / 3 shared
Kvashnin, Dmitry
1 / 7 shared
Tenne, Reshef
1 / 29 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Weng, Qunhong
  • Zhou, Min
  • Yang, Yijun
  • Wang, Xi
  • Bando, Yoshio
  • Sorokin, Pavel
  • Popov, Zakhar
  • Kvashnin, Dmitry
  • Tenne, Reshef
OrganizationsLocationPeople

article

Theoretical aspects of WS2 nanotube chemical unzipping

  • Antipina, Liubov Yu
  • Kvashnin, Dmitry
  • Tenne, Reshef
  • Sorokin, Pavel
Abstract

Theoretical analysis of experimental data on unzipping multilayered WS(2) nanotubes by consequent intercalation of lithium atoms and 1-octanethiol molecules [C. Nethravathi, et al., ACS Nano, 2013, 7, 7311] is presented. The radial expansion of the tube was described using continuum thin-walled cylinder approximation with parameters evaluated from ab initio calculations. Assuming that the attractive driving force of the 1-octanethiol molecule is its reaction with the intercalated Li ions ab initio calculations of a 1-octanethiol molecule bonding with Li(+) were carried out. In addition, the non-chemical interactions of the 1-octanethiol dipole with an array of positive point charges representing Li(+) were taken into account. Comparing between the energy gain from these interactions and the elastic strain energy of the nanotube allows us to evaluate a value for the tube wall deformation after the implantation of 1-octanethiol molecules. The ab initio molecular dynamics simulation confirmed our estimates and demonstrated that a strained WS(2) nanotube, with a decent concentration of 1-octanethiol molecules, should indeed be unzipped into the WS(2) nanoribbon.

Topics
  • impedance spectroscopy
  • nanotube
  • simulation
  • molecular dynamics
  • Lithium